Worksheet \# 6.5: Snow Day Supplement

1. Determine if the following limits exist and evaluate each limit that exists. Carefully explain each step.
(a) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(b) $\lim _{x \rightarrow 2} \frac{x+2}{x-2}$
(c) $\lim _{s \rightarrow 5} \frac{1}{s-5}\left(\frac{1}{s^{2}}-\frac{1}{25}\right)$.
2. A particle is thrown up from the ground and after t seconds its height in meters is given by the function $h(t)=-5 t^{2}+20 t$.
(a) At which time(s) t is the particle on the ground?
(b) Find the average velocity on the interval $[2,2+s]$.
(c) Take the limit as s approaches 0 of the expression you found in part b) to determine the instantaneous velocity at time $t=2$.
(d) At time $t=2$ is the particle moving up or down?
3. Suppose that $f(x)=1 /(x-1)$.
(a) Find the slope of the secant line through $(2, f(2))$ and $(x, f(x))$.
(b) Take the limit as x approaches 2 of the expression in part a).
(c) Find the equation of the tangent line to the graph of f at the point $(2, f(2))$.
4. A particle moves along a line and its position after time t seconds is $p(t)=3 t^{3}+2 t$ meters to the right of the origin. Find the instantaneous velocity of the particle at $t=2$.
5. Give the precise statement of the definition of continuity at a point.
6. Referring to the definition of continuity, explain whether or not the functions below are continuous at 2.
(a) $f(x)= \begin{cases}\frac{x-2}{x^{2}-4}, & x \neq 2 \\ 4, & x=2\end{cases}$
(b) $f(x)= \begin{cases}\frac{x+2}{x^{2}-4}, & x \neq 2 \\ 4, & x=2\end{cases}$
(c) $f(x)= \begin{cases}\frac{x-2}{x^{2}-4}, & x \neq 2 \\ 1 / 4, & x=2\end{cases}$
7. Suppose that $0 \leq f(x) \leq x^{2}+2 x+b$. There is one value of b for which we can use the squeeze theorem to find a limit of f. Find the value of b. For this value of b, give the value of a for which we can find $\lim _{x \rightarrow a} f(x)$.
8. Recall the Pythagorean identity for sin and $\cos , \sin ^{2}(x)+\cos ^{2}(x)=1$. Divide each term by $\cos ^{2}(x)$ and obtain an identity involving $\tan (x)$ and $\sec (x)$.
What identity do you obtain if you divide by $\sin ^{2}(x)$?
