MA 113 Calculus I, Spring 2020 Written Assignment \#3

Instructions: The purpose of this assignment is to develop your ability to formulate and communicate mathematical arguments. Your complete assignment should have your name and section number on each page, be stapled, and be neat and legible. Unreadable work will receive no credit.

You should provide well-written, complete answers to each of the questions. We will look for correct mathematical arguments, complete explanations, and correct use of English. Your solution should be formulated in complete sentences. As appropriate, you may want to include diagrams or equations written out on a separate line. You may read your textbook to find examples of how we communicate mathematics.

Students are encouraged to use word-processing software to produce high quality solutions. However, you may find that it is simpler to add graphs and equations using pen or pencil.

1. Find a cubic function $f(x)=a x^{3}+b x^{2}+c x+d$ whose graph has horizontal tangents at the points $(-2,6)$ and $(2,0)$.
2. An object with weight W is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is

$$
F=\frac{\mu W}{\mu \sin \theta+\cos \theta}
$$

where μ is a constant called the coefficient of friction.
(a) Find the rate of change of F with respect to θ.
(b) When is this rate of change equal to 0 ?
(c) If $W=50 \mathrm{lb}$ and $\mu=0.6$, draw the graph of F as a function of θ and use it to locate the value of θ for which $d F / d \theta=0$. Is the value consistent with your answer to part (b)?

