MA 114 — Calculus II Exam 2	Spring 2015 March 10, 2015					
Name:						
Section:						
Last 4 digits of student ID #:						

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions: Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions: Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	A	X	С	D	Е
2	A	В	С	X	Ε
3	A	В	X	X	E
4	A	В	X	D	E
5	X	В	С	D	E
6	A	В	С	D	X
7	A	В	С	D	X

Exam Scores

Question	Score	Total
MC		28
8		14
9		15
10		15
11		13
12		15
Total		100

Unsupported answers for the free response questions may not receive credit!

Free Response Questions: Show your work!

8. Find the first four terms of the Taylor series for $f(x) = (1-x)^{-1/2}$ centered at 0. (Hint: you are looking for a polynomial of degree 3.)

$$A'(x) = (-\frac{1}{2})(1-x)^{-\frac{3}{2}}(-1) = \frac{1}{2}(1-x)^{-\frac{3}{2}}$$

$$A'(0) = \frac{1}{2}(1-0)^{-\frac{3}{2}} = \frac{1}{2}$$

$$A''(x) = \frac{1}{2}(-\frac{3}{2})(1-x)^{-\frac{5}{2}}(-1) = \frac{3}{4}(1-x)^{-\frac{5}{2}}$$

$$A'''(0) = \frac{3}{4}(1-x0)^{-\frac{5}{2}} = \frac{3}{4}$$

$$A'''(x) = \frac{3}{4} \cdot (-\frac{5}{2})(1-x)^{-\frac{7}{2}}(-1) = \frac{15}{8}(1-x)^{-\frac{7}{2}}$$

$$A''''(0) = \frac{15}{8}(1-0)^{-\frac{7}{2}} = \frac{15}{8}$$

$$T_{3}(1) = J(0) + \frac{J'(0)}{1!}(x-0) + \frac{J''(0)}{2!}(x-0)^{2} + \frac{J'''(0)}{3!}(x-30)^{3}$$

$$= 1 + \frac{1}{2}x + \frac{3}{4} \cdot \frac{1}{2}x^{2} + \frac{15}{8} \cdot \frac{1}{4}x^{3}$$

$$\int_{0}^{2} 3pts$$

Free Response Questions: Show your work!

9. Find the volume of the solid whose base is the circle $x^2 + y^2 = 2^2$ and the cross sections perpendicular to the x-axis are squares.

the cross section area at slice X is
$$(\sqrt{4-x^2} - -\sqrt{4-x^2})^2$$
 = $(2\sqrt{4-x^2})^2 = 4(4-x^2)$

endpts of integration ± 2 } 2pts

Volume =
$$\int_{-2}^{2} 4(4-x^{2}) dx$$
 } 4 pts
= $4(4x-\frac{1}{3}x^{3}|_{-2}^{2})$
= $4(8-\frac{1}{3}\cdot2^{3}-4(-2)+\frac{1}{3}(-2)^{3})$
= $4(8-\frac{8}{3}+8-\frac{8}{3})=4(16-\frac{16}{3})$
= $4\cdot\frac{32}{3}$

3 pts

- 10. Consider the region between the circle $x^2 + y^2 = 4$ and the line y = 1 and above the x-axis.
 - (a) Graph this region.

(b) Use the disk/washer method to find the volume of the solid given by revolving this region around the x-axis.

endpts $\chi^2 + 1^2 = 4$ $\chi^2 = 3$ $\chi = \pm \sqrt{3}$ $\int Z pts$ incide radius 1 $\int Z pts$ (of if this is not made upplied) outside radius $\sqrt{4-\chi^2}$

Volume =
$$\int_{-\sqrt{3}}^{\sqrt{3}} T \left(\left(\sqrt{4 - \chi^2} \right)^2 - 1^2 \right) d\chi$$
 $\int_{-\sqrt{3}}^{4} T \left(4 - \chi^2 - 1 \right) d\chi = \int_{-\sqrt{3}}^{\sqrt{3}} T \left(3 - \chi^2 \right) d\chi$
= $T \left(3\chi - \frac{1}{3} \chi^3 \right) \int_{-\sqrt{3}}^{4} T \left(3 - \chi^2 \right) d\chi$
= $T \left(3\chi - \frac{1}{3} \chi^3 \right) \int_{-\sqrt{3}}^{4} T \left(3\sqrt{3} - \frac{(\sqrt{3})^3}{3} - 3(-\sqrt{3}) + \frac{(-\sqrt{3})^3}{3} \right)$
= $T \left(2\sqrt{3} - \frac{2(\sqrt{3})^3}{3} \right) = T \left(2\sqrt{3} - 2\sqrt{3} \right) = 4T\sqrt{3}$

Free Response Questions: Show your work!

11. Use the shell method to find the volume of the solid given by revolving the region between the graphs of $y = -x^2 + 6x - 8$ and y = 0 around the y-axis.

endpts
$$0 = -x^2 + (ex - 8)$$

= $(-1)(x-4)(x-2)$ } 2pts
endpts are 2,4

cylinders have base at
$$y=0$$

top at $y=-X^2+6x-8$ } $2pto$

Volume =
$$\int_{2}^{4} 2\pi \times (-x^{2}+6x-8) dx$$
 } 5pts
= $2\pi \int_{2}^{4} (-x^{3}+6x^{2}-8x) dx$
= $2\pi (-\frac{1}{4}x^{4}+2x^{3}-4x^{2}) + \frac{1}{2}$
= $2\pi (-\frac{1}{4}\cdot 4^{4}+2\cdot 4^{3}-4\cdot 4^{3}+\frac{1}{4}\cdot 2^{4}-2\cdot 2^{3}+4\cdot 2^{2})$
= $2\pi (-4^{3}+2\cdot 4^{3}-4^{3}+4-2^{4}+2^{4})=8\pi$

12. (a) Compute $\int \tan^3 x \sec^2 x dx$

$$u = \tan x$$

$$du = \sec^2 x dx$$

$$\int \tan^3 x \sec^2 x dx = \int u^3 du = \frac{1}{4} u^4 + C$$

$$= \frac{1}{4} \tan^4 x + C$$

$$\int 3pts$$

(b) What is the volume of the solid given by revolving the region under $f(x) = \sin^{3/2} x$ and above $[0, \pi]$ around the x-axis?

endpts
$$0, \pi$$
 } lpt
Volume = $\int_{0}^{\pi} \pi \left(\sin^{3/2} x \right)^{2} dx$ } 3pt
= $\pi \int_{0}^{\pi} \sin^{3} x dx = \pi \int_{0}^{\pi} (1 - \cos^{2} x) \sin^{3} x dx$ } 3pt
= $\pi \int_{0}^{\pi} (\sin x - \cos^{2} x \sin x) dx$
= $\pi \left(-\cos x + \frac{1}{3} \cos^{3} x \right)_{0}^{\pi}$
= $\pi \left(-(-1) + \frac{1}{3}(-1)^{3} + (1) - \frac{1}{3}(1)^{3} \right)$
= $\pi \left(2 - \frac{2}{3} \right) = 4\pi/3$