MA 114 — Calculus II Exam 4

Spring 2015 May. 4, 2015

Name	KE	Y
Name	, –	

Section:		

Last 4 digits of student ID #: _____

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.

$\bullet\,$ Multiple Choice Questions:

Record your answers on the right of this cover page by marking the box corresponding to the correct answer.

• Free Response Questions:

Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	A	獭	С	D	Е
2	A	В		D	Ε
3	編	В	C	D	Ε
4	A	В	С		Е
5	A	В	С	D	
6	A	В		D	Ε
7	A	В	С	D	

Exam Scores

Question	Score	Total
MC		28
8		15
9		15
10		10
11		12
12		20
Total		100

Unsupported answers for the free response questions may not receive credit!

Feel free to use the following identities:

$$\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}, \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}, \qquad \sin(2\theta) = 2\sin\theta\cos\theta.$$

1. Find the antiderivative of $(x+1)\sin(2x)$:

A.
$$\cos(2x) + \frac{(x+1)^2}{2}\sin(2x) + C$$

(B.)
$$\frac{-(x+1)}{2}\cos(2x) + \frac{\sin(2x)}{4} + C$$

C.
$$(x+1)\sin(2x) - \cos(2x) + C$$

D.
$$\sin(2x) - (x+1)\cos(2x) + C$$

E.
$$\frac{x+1}{2}\cos(2x) - \frac{1}{4}\sin(2x) + C$$

$$u=x+1$$
 $dv=sm(2x)dx$
 $du=dx$ $v=-cos(2x)$
 $\frac{-cos(2x)}{2}$

$$= \frac{-(x+1)}{2} \cos(2x) + \frac{1}{2} \int \cos(2x) dx$$

$$= \frac{-(x+1)}{2} \cos(2x) + \frac{3m(2x)}{4} + C$$

X= r cos(O) y= rsin(O)

 $= 3 \left(s \left(\frac{2\pi}{3} \right) \right) = 3 \sin \left(\frac{2\pi}{3} \right)$

2. The rectangular coordinates for the point with polar coordinates r=3 and $\theta=2\pi/3$ are

= 3.(-1)

A.
$$\left(3, \frac{2\pi}{3}\right)$$

$$\text{B.} \quad \left(-\frac{2\pi}{3}, 3\right)$$

D.
$$\left(\sqrt{9 + \frac{4\pi^2}{9}}, \arctan\left(\frac{2\pi}{9}\right)\right)$$

E.
$$(0, -3)$$

= 3, 5

3. Which of the following improper integrals converge?

$$I. \int_{1}^{\infty} \frac{dx}{x^2},$$

II.
$$\int_0^1 \frac{dx}{x^3}$$

III.
$$\int_0^1 \frac{dx}{x^3}, \qquad \qquad \text{III.} \int_1^\infty \frac{dx}{(x-2)^4}$$

I. only

В.

Ε.

- I. conveyes by integral p-test
 II. diveyes by integral p-test
- C.I. and III. only

II. only

$$\frac{111}{5} = \frac{dx}{(x-2)^4} = \frac{2}{5} = \frac{dx}{(x-2)^4} + \frac{2}{5} = \frac{dx}{(x-2)^4}$$
both draws

D. all of these converge

none of these converge

- Which of the following is true for the infinite series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$? 4.
 - Α. It is divergent.
 - В. It is absolutely convergent, but divergent.
 - С. It is convergent, but not absolutely convergent.
 - D. It is absolutely convergent and convergent.
 - Ε. None of the above.

5. The power series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n}}{n}$$

is a Taylor series for which function?

A. $\sin(-x)$

d/dx (n(1+x2) = 2x 1'(0) = 0

- B. $\arctan(-x)$
- C. $\ln(1-x)$ $\frac{c(2)}{dx^2} \ln(1+x^2) = \frac{2(1+x^2)-2x-2x}{1+x^2}$
- D. xe^{-x}
- (E.) $\ln(1+x^2)$

So Taylor series for
$$ln(1+x^2)$$
 starts
 $f(0) + f'(0) \times + \frac{f''(0)}{2} \times^2 + - - -$

The other 4 functions have a nonzero linear coefficient.

What is the area of the surface obtained by rotating the curve $u = \frac{x^3}{x}$ for 0 < x < 1.

6. What is the area of the surface obtained by rotating the curve $y = \frac{x^3}{3}$, for $0 \le x \le 1$, around the x-axis? $f'(x) = \frac{3}{2} x^2 = x^2$

A.
$$\frac{\pi}{81}(10\sqrt{10}-1)$$

B.
$$\frac{4\pi}{45}(1+\sqrt{2})$$

C.
$$\frac{\pi}{9}(2\sqrt{2}-1)$$

D.
$$\frac{110}{101}$$

Area =
$$2\pi \int_{0}^{1} \frac{x^{3}}{3} \sqrt{1+(x^{2})^{2}} dx$$

= $\frac{2\pi}{3} \int_{0}^{1} x^{3} \sqrt{1+x^{4}} dx$

7. Which of the following describes the behavior of the solution to the differential equation y' = 3(y - 10) with initial condition y(0) = 5?

A.
$$\lim_{t \to \infty} y(t) = 3$$

K=370 gouth

B.
$$\lim_{t \to \infty} y(t) = 5$$

- $C. \quad \lim_{t \to \infty} y(t) = 10$
- $D. \quad \lim_{t \to \infty} y(t) = \infty$
- $\underbrace{\text{E.}} \lim_{t \to \infty} y(t) = -\infty$

8. Consider the curve parametrized by

$$x(t) = t^2 - 1,$$
 $y(t) = t^3 - 3t.$

(a) Find the value(s) of t that correspond to the point (2,0) under this parametrization.

(b) Find the equation for the tangent line(s) to the curve at the point (2,0).

$$slope = \frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{3t^2 - 3}{2t} = \frac{3}{2} \frac{t^2 - 1}{t}$$

$$0 + \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3}{2} \frac{3 - 1}{\sqrt{3}} = \frac$$

equation i)
$$y = -\sqrt{3}(x-z)$$
 or $y = -\sqrt{3}x + 2\sqrt{3}$ (c) Find the point(s) where the tangent line to the curve is vertical.

Slope = 1/1+) = 3 £2-1 vertical tangent => x'lt)=0 and y'lt) \$0. 1) x'(+)=0 only when t=0. y'(0)= 3(02-1)=-3 +0. There :, a vertical tangent line at $(\times 10), Y(0)) = (-1,0), \quad 0$

9. (a) Find the general solution of the differential equation

$$y' + xy = (x+1)e^x.$$

This is linear. The indegrating factor is

The solution is y(x) = 1/d(x) S x(x) B(x) dx = e-x2/2 S ex2/2.(x+1)ex dx 1 = e-x3/2 S (x+1) ex3/2 +x dx U=x2/2 +x (1) du=(x+1)dx = e-x2/2 < ea da = e-x3/2 (e"+c)= ex3/2 (ex3/2+x +c) = e* + C e - * 1

(b) Solve the initial value problem

$$y' + 4xy^2 = 0, y(1) = -1.$$

This is separable y'=-4xy2

$$\frac{1}{y} = -2x^2 + C$$

Plug in initial condition;

$$1 - 1 = \frac{1}{2(1)^2 + C} = \frac{1}{2 + C}$$

$$-1 = 2 + C$$

$$0 -3 = 0$$

Solution is
$$y = \frac{1}{2x^2 - 3}$$

10. Consider the curve parametrized by

$$x(t) = 2t^2 + 6t + 5,$$
 $y(t) = t^2 + 3t,$ $0 \le t \le 2.$

(a) Find the speed of the parametrization at time t.

(b) Find a value for t where the speed is equal to 10.

$$10 = \sqrt{51} (2t+3)$$
 1
 $2\sqrt{51} = 2t+3$
 $\sqrt{51} - \frac{3}{7} = t$ 1

(c) Find the length of this curve.

length =
$$S$$
 speed dt ()
= S_{0}^{2} $\sqrt{3}(2t+3)dt$ ()
= $\sqrt{3}(2t+3)dt$ ()

11. Consider the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{3^n} (x-5)^n.$$

- (a) Determine the radius of convergence of the power series above. Clearly indicate which tests you use, and verify that all necessary assumptions are satisfied.
- (1) Ratio Test Assure x + 5, so terms nonzero

$$\frac{1}{1} \int_{N-3\infty}^{1} \left| \frac{(-1)^{N+1}(N+1)^{2}}{3^{N+1}} (x-5)^{N+1}}{\frac{(-1)^{N}}{3^{N}}} \left| \frac{1}{2} \int_{N-3\infty}^{1} \left(\frac{N+1}{N} \right)^{2} \frac{1}{2} \frac{1}{3} \right| = \lim_{N\to\infty} \left(\frac{N+1}{N} \right)^{2} \frac{1}{3} = \lim_{N\to\infty} \left(\frac{N+1}{N} \right)^{2} \frac{1}{3} = \lim_{N\to\infty} \left(\frac{N+1}{N} \right)^{2} \frac{1}{3} = \lim_{N\to\infty} \left(\frac{N+1}{N} \right)^{2} = \lim_{N\to$$

- The limit is <1 when 1×51<3, so
 the radius of convergence is 3.
 - (b) Determine the interval of convergence of the power series above. Clearly indicate which tests you use, and verify that all necessary assumptions are satisfied.

It conveyes moved (5-3,5+3) = (2,8). Need to check the endpoints.

$$\frac{x-7}{1} \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{3^{n}} (2-5)^{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{3^{n}} (-3)^{n} = \sum_{n=1}^{\infty} n^{2}$$

alverger by the Divergence Test. 1

$$\frac{\times = 8}{10} \sum_{n=1}^{\infty} \frac{(-1)^n n^2}{3^n} (8-5)^n = \sum_{n=1}^{\infty} \frac{(-1)^n n^2}{3^n} 3^n = \sum_{n=1}^{\infty} \frac{(-1)^n n^2}{3^n$$

The interval of convergence 13 (2,8). 1

Free Response Questions: Show your work!

12. (a) Let R_1 be the region in the first quadrant bounded above by $f(x) = \frac{1}{1+x^2}$, on the sides by x = 0 and x = 1, and below by the x-axis.

Use the Disk/Washer method to find the volume of the solid obtained by rotating R_1 around the x-axis. Give an **exact value**, not a decimal approximation.

(b) Let R_2 be the region in the first quadrant bounded above by $f(x) = \frac{1}{(x+1)(x+2)}$, on the sides by x = 1 and x = 3, and below by the x-axis.

Use the **Shell** method to find the volume of the solid obtained by rotating R_2 around the y-axis. Give an **exact value**, not a decimal approximation.

$$|\nabla_{0}| = 2\pi S \times f(x) dx$$

Partial Fractions. (1)

$$\frac{\times}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} \quad \boxed{}$$

$$= 2\pi \ln \frac{2.5^2}{3^2.4} = 2\pi \ln \frac{25}{18}$$