Exam 4

Name:	G .:
Name:	Section:
1101110	

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5" x 11" paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions

1	A	B	\bigcirc	D	\bigcirc E		6
---	---	---	------------	---	--------------	--	---

- O A B C D E
- **2** (A) (B) (C) (D) (E)
- 7 (A) (B) (C) (D) (E)
- **3** (A) (B) (C) (D) (E)

8 (A) (B) (C) (D) (E)

4 (A) (B) (C) (D) (E)

9 (A) (B) (C) (D) (E)

5 A B C D E

10 (A) (B) (C) (D) (E)

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) Use Simpson's Rule with n=4 intervals to approximate $\int_0^2 \sqrt{1+x^2} dx$.

A.
$$\frac{1}{4}(1\sqrt{1+(0)^2}+2\sqrt{1+(\frac{1}{2})^2}+2\sqrt{1+(1)^2}+2\sqrt{1+(\frac{3}{2})^2}+1\sqrt{1+(2)^2})$$

B.
$$\frac{1}{6}(1\sqrt{1+(0)^2}+4\sqrt{1+(\frac{1}{2})^2}+2\sqrt{1+(1)^2}+4\sqrt{1+(\frac{3}{2})^2}+1\sqrt{1+(2)^2})$$

C.
$$\frac{1}{6}(1\sqrt{1+(0)^2}+1\sqrt{1+(\frac{1}{2})^2}+1\sqrt{1+(1)^2}+1\sqrt{1+(\frac{3}{2})^2}+1\sqrt{1+(2)^2})$$

D.
$$\frac{1}{2}(1\sqrt{1+(0)^2}+1\sqrt{1+(\frac{1}{2})^2}+1\sqrt{1+(1)^2}+1\sqrt{1+(\frac{3}{2})^2}+1\sqrt{1+(2)^2})$$

E.
$$\frac{1}{2}(1\sqrt{1+(0)^2}+1\sqrt{1+(\frac{1}{2})^2}+1\sqrt{1+(1)^2}+1\sqrt{1+(\frac{3}{2})^2})$$

- 2. (5 points) Find the **focus** and the **directrix** of the parabola with equation $6x = y^2$.
 - A. Focus (0,3) Directrix y = -3
 - B. Focus (0,0) Directrix y = -3
 - C. Focus $(0, \frac{3}{2})$ Directrix $x = \frac{3}{2}$
 - D. Focus (0,0) Directrix y = -12
 - E. Focus $(\frac{3}{2},0)$ Directrix $x=-\frac{3}{2}$

- 3. (5 points) Find the sum of the series $\sum_{n=2}^{\infty} \frac{3+2^n}{4^n}.$
 - A. $\frac{3}{4}$
 - B. $\frac{7}{12}$
 - C. $\frac{9}{16}$
 - D. $\frac{3}{2}$
 - E. $\frac{11}{12}$

- 4. (5 points) Compute the indefinite integral $\int \sqrt{1-x^2} dx$.
 - A. $\frac{1}{2}(\ln(x+\sqrt{1-x^2})+x\sqrt{1-x^2})+C$
 - B. $\frac{2}{3}(1-x^2)^{\frac{3}{2}}+C$
 - C. $(1-x^2)^{\frac{3}{2}} + 2x\sqrt{1-x^2} + C$
 - D. $\frac{1}{2}(\arcsin(x) + x\sqrt{1-x^2}) + C$
 - E. $x \frac{1}{3}x^3 + C$

- 5. (5 points) Consider the curve C parametrized by x(t) = t 3 and $y(t) = t^2 + t + 1$. Find the slope of the tangent line to C at (-1,7).
 - A. -2
 - B. 0
 - C. 5
 - D. The slope is undefined at this point.
 - E. 2

- 6. (5 points) What would you compare $\sum_{n=1}^{\infty} \frac{\sqrt{n^4+1}}{n^5+2n}$ to for a conclusive limit comparison test?
 - A. $\sum_{n=1}^{\infty} \frac{1}{n^3}$
 - B. $\sum_{n=1}^{\infty} \frac{1}{n^4}$
 - $C. \sum_{n=1}^{\infty} \frac{1}{n^5}$
 - $D. \sum_{n=1}^{\infty} \frac{1}{2n}$
 - E. The limit comparison test can't be used to understand convergence for this series.

7. (5 points) What is the form of the partial fraction decomposition of

$$\frac{x^2 - 2}{(x+1)^2(x^2 - x + 7)}?$$

A.
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2-x+7} + \frac{Ex+F}{(x^2-x+7)^2}$$

B.
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2-x+7}$$

C.
$$\frac{A}{x+1} + \frac{Bx+C}{x^2-x+7}$$

D.
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x^2 - x + 7}$$

E.
$$\frac{A}{(x+1)^2} + \frac{Bx + C}{x^2 - x + 7}$$

8. (5 points) Find the coefficient B in the partial fraction decomposition

$$\frac{1}{(x)(x^2+x+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+x+1}$$

A.
$$B = 3$$

B.
$$B = 0$$

C.
$$B = -2$$

D.
$$B = -1$$

E.
$$B = \frac{1}{2}$$

9. (5 points) Which of the following integrals computes the **arc length** of the parametric curve $x(t) = t^2$, $y(t) = t^3$, $1 \le t \le 2$?

A.
$$\int_{1}^{2} \sqrt{4+9t^2} dt$$

B.
$$\int_{1}^{2} \sqrt{1+t^2} dt$$

C.
$$\int_{1}^{2} t\sqrt{4+9t^2} dt$$

D.
$$\int_{1}^{2} (t-1)\sqrt{t^2-1}dt$$

E.
$$\int_{1}^{2} 2\pi t \sqrt{1 + 9t^2} dt$$

10. (5 points) A surface is created by rotating the graph of $f(x) = e^x - 1$ from x = 0 to x = 15 around the x-axis. What is the integral that computes the area of this surface?

A.
$$\int_0^{15} 2\pi x (1 + e^{2x}) dx$$

B.
$$\int_0^{15} 2\pi (e^x) \sqrt{1 + e^x} dx$$

C.
$$\int_0^{15} e^x - \sqrt{1 + e^x} dx$$

D.
$$\int_0^{15} 2\pi x \sqrt{e^x + e^{2x}} dx$$

E.
$$\int_0^{15} 2\pi (e^x - 1)\sqrt{1 + e^{2x}} dx$$

Free Response Questions

11. (a) (5 points) Compute $\int x \ln(x) dx$.

(b) (5 points) Find the Taylor series for the function xe^x centered at 0.

12. (10 points) Find the **interval** of convergence for the power series:

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{5^n}.$$

Be sure to show all work necessary to justify your answer.

13. (a) (5 points) Find the foci of the ellipse defined by the equation

$$\frac{(y-1)^2}{4} + \frac{(x+1)^2}{9} = 1.$$

(b) (5 points) Find the foci of the hyperbola defined by the equation

$$\frac{y^2}{4} - \frac{x^2}{9} = 1.$$

14. (a) (4 points) Set up an integral to compute the **arc length** of the polar curve $r = 2\cos(\theta)$ for $0 \le \theta \le \pi$.

(b) (2 points) Compute the **arc length** of the polar curve $r = 2\cos(\theta)$ for $0 \le \theta \le \pi$.

(c) (4 points) Find a Cartesian equation for the polar curve $r = 2\cos(\theta)$.

- 15. Let S be the solid obtained by rotating the region bounded by the circle $x^2 + y^2 = 1$ around the line x = 2.
 - (a) (5 points) Set up the integral that computes the volume of S using the disk/washer method.

(b) (5 points) Set up the integral that computes the volume of S using the cylindrical shells method.