Name:
Section:
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (6 points) Find the exact length L of the polar curve

$$
r=\theta^{2}, \quad 0 \leq \theta \leq \sqrt{21}
$$

Solution: We have

$$
L=\int_{0}^{\sqrt{21}} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta=\int_{0}^{\sqrt{21}} \sqrt{\theta^{4}+4 \theta^{2}} d \theta=\int_{0}^{\sqrt{21}} \theta \sqrt{\theta^{2}+4} d \theta
$$

The substitution $u=\theta^{2}+4$ gives $d u=2 d \theta$ and

$$
\int \theta \sqrt{\theta^{2}+4} d \theta=\frac{1}{2} \int \sqrt{u} d u=\frac{u^{3 / 2}}{3}+C=\frac{\left(\theta^{2}+4\right)^{3 / 2}}{3}+C .
$$

Thus

$$
L=\left[\frac{\left(\theta^{2}+4\right)^{3 / 2}}{3}\right]_{\theta=0}^{\theta=\sqrt{21}}=\frac{(25)^{3 / 2}-4^{3 / 2}}{3}=\frac{125-8}{3}=39 .
$$

2. (4 points) Find the vertex, focus, and directrix of the parabola $(x-1)^{2}=8 y$.

Solution: First consider the parabola $x^{2}=8 y$. Thus $4 p=8$ and $p=2$. Therefore the vertex, focus, and directrix of $x^{2}=8 y$ are, respectively,

$$
(0,0), \quad(0,2), \quad \text { and } \quad y=-2
$$

The parabola $(x-1)^{2}=8 y$ is obtained from the parabola $x^{2}=8 y$ by translating it one unit to the right. Thus the vertex, focus, and directrix of $(x-1)^{2}=8 y$ are, respectively,

$$
(1,0), \quad(1,2), \quad \text { and } \quad y=-2
$$

