Name:
Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (4 points) Find the antiderivative $\int \sin ^{5}(x) d x$.

Solution: Take $u=\cos (x)$. We have $d u=-\sin (x) d x$ and

$$
\sin ^{4}(x)=\left(1-\cos ^{2}(x)\right)^{2}=\left(1-u^{2}\right)^{2}=1-2 u^{2}+u^{4} .
$$

Thus

$$
\begin{aligned}
\int \sin ^{5}(x) d x & =\int \sin ^{4}(x) \sin (x) d x \\
& =-\int\left(1-2 u^{2}+u^{4}\right) d u \\
& =-u+\frac{2 u^{3}}{3}-\frac{u^{5}}{5}+C \\
& =-\cos (x)+\frac{2 \cos ^{3}(x)}{3}-\frac{\cos ^{5}(x)}{5}+C
\end{aligned}
$$

2. (6 points) Use a trigonometric substitution to evaluate the integral $\int_{0}^{1 / 2} \sqrt{1-4 x^{2}} d x$.

Solution: We use the trigonometric substitution $x=\frac{1}{2} \sin (\theta)$ with $-\pi / 2 \leq \theta \leq \pi / 2$. Then $d x=\frac{1}{2} \cos (\theta) d \theta$ and $\sqrt{1-4 x^{2}}=\cos (\theta)$. Thus

$$
\begin{aligned}
\int_{0}^{1 / 2} \sqrt{1-4 x^{2}} d x & =\frac{1}{2} \int_{0}^{\pi / 2} \cos ^{2}(\theta) d \theta \\
& =\frac{1}{4} \int_{0}^{\pi / 2}(1+\cos (2 \theta)) d \theta \\
& =\frac{1}{4}\left[\theta+\frac{\sin (2 \theta)}{2}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{8}
\end{aligned}
$$

