Name:
Section:
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (7 points) Use partial fractions to evaluate $\int \frac{x^{3}+1}{x^{2}-4} d x$.

Solution: First use the long division to write $\frac{x^{3}+1}{x^{2}-4}$ as a sum of a polynomial and a proper rational function:

$$
\frac{x^{3}+1}{x^{2}-4}=x+\frac{4 x+1}{x^{2}-4}
$$

Since $x^{2}-4=(x-2)(x+2)$ is a product of distinct linear terms, we write

$$
\frac{4 x+1}{x^{2}-4}=\frac{A}{x-2}+\frac{B}{x+2} .
$$

Then

$$
A(x+2)+B(x-2)=4 x+1
$$

i.e., $A+B=4$ and $2 A-2 B=1$. Solving this for A and B gives $A=9 / 4, B=7 / 4$. Thus

$$
\frac{x^{3}+1}{x^{2}-4}=x+\frac{9}{4}\left(\frac{1}{x-2}\right)+\frac{7}{4}\left(\frac{1}{x+2}\right)
$$

and

$$
\int \frac{x^{3}+1}{x^{2}-4} d x=\frac{x^{2}}{2}+\frac{9}{4} \ln |x-2|+\frac{7}{4} \ln |x+2|+C .
$$

2. (3 points) Let R_{n} be a right endpoint approximation for the integral $\int_{1}^{5} e^{-x} d x$. Is R_{n} larger or smaller than the exact value of the integral?

Solution: Since the function e^{-x} is decreasing on $[1,5]$, the smallest value of e^{-x} on any subinterval of this interval will be at the right endpoint. Thus, any right endpoint sum will be smaller than the integral.

