Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (4 points) Let $a_{n}=\sin (n) / \sqrt{n}$. Does the sequence $\left\{a_{n}\right\}$ converge? If the sequence converges, find its limit. You must give a mathematical justification as, for example, by applying a theorem.

Solution: Since

$$
-\frac{1}{\sqrt{n}} \leq \frac{\sin (n)}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}
$$

and

$$
\lim _{n \rightarrow \infty}\left(-\frac{1}{\sqrt{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n}}\right)=0
$$

the limit $\lim _{n \rightarrow \infty} a_{n}$ exists and is equal to 0 by the Squeeze Theorem.
2. (6 points) For each of the following sequences, determine whether it converges, and if yes, find its limit:
(a) (2 points) $a_{n}=\frac{e^{n}}{3^{n+1}}$
(b) (2 points) $b_{n}=\frac{n^{2}+1}{(2 n+1)^{2}}$
(c) (2 points) $c_{n}=\frac{e^{n}}{n^{2}}$

Solution: (a) We have

$$
\frac{e^{n}}{3^{n+1}}=\frac{1}{3} \cdot\left(\frac{e}{3}\right)^{n}=\frac{r^{n}}{3}
$$

with $r=e / 3<1$. Thus the sequence converges to 0 .
(b) We have

$$
\frac{n^{2}+1}{(2 n+1)^{2}}=\frac{n^{2}+1}{4 n^{2}+4 n+1}=\frac{1+1 / n^{2}}{4+4 / n+1 / n^{2}}
$$

Thus $\left\{b_{n}\right\}$ converges to $1 / 4$.
(c) We have $c_{n}=f(n)$ with $f(x)=\frac{e^{x}}{x^{2}}$. Using l'Hôpital's Rule twice,

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty
$$

Thus $\left\{c_{n}\right\}$ diverges to infinity.

