Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (5 points) Use the Ratio Test to determine whether the series

$$
\sum_{n=1}^{\infty} \frac{n^{10} 10^{n}}{n!}
$$

converges or diverges.

Solution: Letting $a_{n}=\frac{n^{10} 10^{n}}{n!}$, we have

$$
\left|a_{n+1} / a_{n}\right|=\left(\frac{(n+1)^{10} 10^{n+1}}{(n+1)!}\right)\left(\frac{n!}{n^{10} 10^{n}}\right)=\frac{10(n+1)^{9}}{n^{10}}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=\lim _{n \rightarrow \infty} \frac{10(n+1)^{9}}{n^{10}}=\lim _{n \rightarrow \infty}\left(\frac{10}{n}\right)\left(1+\frac{1}{n}\right)^{9}=0<1
$$

Thus the series converges absolutely by the Ratio Test.
2. (5 points) Determine the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{3^{n} n}$.

Solution: Let $a_{n}=\frac{(-1)^{n-1} x^{n}}{3^{n} n}$. Then $\left|a_{n+1} / a_{n}\right|=\frac{n|x|}{3(n+1)}$. Thus

$$
\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=\lim _{n \rightarrow \infty} \frac{n|x|}{3(n+1)}=\frac{|x|}{3} .
$$

Applying the Ratio Test, we see that the series $\sum_{n=1}^{\infty} a_{n}$ converges in $(-3,3)$. For $x=3$, we have $a_{n}=\frac{(-1)^{n-1}}{n}$ and the series $\sum_{n=1}^{\infty} a_{n}$ converges by the Aternating Series Test. For $x=-3$, we have $a_{n}=\frac{1}{n}$ and the series $\sum_{n=1}^{\infty} a_{n}$ diverges since it is the p-series with $p=1$ (harmonic series). Therefore the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{3^{n} n}$ is $(-3,3]$.

