Name:
Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (6 points) Use the method of cylindrical shells to compute the volume V of the solid obtained by rotating the region bounded by $y=\ln (x), y=0$ and $x=e$, about the y-axis. Note: You must use cylindrical shells to get credit for this problem.

Solution: The curves $y=\ln (x)$ and $y=0$ intersect at the point $(1,0)$. Thus the volume is given by

$$
V=\int_{1}^{e}(2 \pi x) \ln (x) d x .
$$

To evaluate this integral, we use integration by parts: Let $d u=2 \pi x d x, v=\ln (x)$. Then $u=\pi x^{2}, d v=d x / x$ and

$$
\int(2 \pi x) \ln (x) d x=\pi x^{2} \ln (x)-\int \pi x d x=\pi x^{2} \ln (x)-\frac{\pi x^{2}}{2}+C .
$$

Therefore

$$
V=\pi\left[x^{2} \ln (x)-\frac{x^{2}}{2}\right]_{x=1}^{x=e}=\frac{\pi\left(e^{2}+1\right)}{2}
$$

2. (4 points) Consider the curve $C: y=2 \sqrt{x}(0 \leq x \leq 3)$. Set up an integral for the area A of the surface obtained by rotating C about the x-axis. Do not evaluate the integral.

Solution: If $f(x)=2 \sqrt{x}$, we have $f^{\prime}(x)=\frac{1}{\sqrt{x}}$. Thus

$$
A=\int_{0}^{3} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=4 \pi \int_{0}^{3} \sqrt{x} \sqrt{1+\frac{1}{x}} d x=4 \pi \int_{0}^{3} \sqrt{x+1} d x
$$

