Name:
Section:
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. Consider a semicircular lamina Q described by

$$
Q=\left\{(x, y) \mid x^{2}+y^{2} \leq 4, y \geq 0,-2 \leq x \leq 2\right\}
$$

with density $\rho=3$ units of mass per unit of area.
(a) (2 points) Use geometry to find the total mass m of the lamina.

Solution: Since the area of Q is 2π, the total mass is $m=6 \pi$.
(b) (2 points) Compute the moment M_{x} of the lamina about the x-axis.

Solution: We have

$$
M_{x}=\frac{3}{2} \int_{-2}^{2}\left(\sqrt{4-x^{2}}\right)^{2} d x=\frac{3}{2} \int_{-2}^{2}\left(4-x^{2}\right) d x=\frac{3}{2}\left[4 x-\frac{x^{3}}{3}\right]_{x=-2}^{x=2}=16 .
$$

(c) (2 points) Find the center of mass of the lamina.

Solution: Clearly $M_{y}=0$ by symmetry. Thus the center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)=\left(0, \frac{16}{6 \pi}\right)=\left(0, \frac{8}{3 \pi}\right) .
$$

2. (4 points) Consider the curve C with parametric equations

$$
x=t^{2}, \quad y=t^{3}-3 t+4 .
$$

Is the point $(4,2)$ on the curve C ? If the answer is no, explain why. If the answer is yes, find t.

Solution: Equating the x-coordinates, we have $t^{2}=4$, i.e. $t= \pm 2$. For $t=2$, $t^{3}-3 t+4=6 \neq 2$. For $t=-2$, we have $t^{3}-3 t+4=2$. Thus the point $(4,2)$ is on the curve C and it corresponds to $t=-2$.

