MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. 207-233)

Chapter Goals:
- Understand the statement of the Fundamental Theorem of Calculus.
- Learn how to compute the antiderivative of some basic functions.
- Learn how to use the substitution method to compute the antiderivative of more complex functions.
- Learn how to solve area and distance traveled problems by means of antiderivatives.

Assignments:
- Assignment 21
- Assignment 22
- Assignment 23 (review)

So far we have learned about the idea of the integral, and what is meant by computing the definite integral of a function $f(x)$ over the interval $[a,b]$. As in the case of derivatives, we study now procedures for computing the definite integral of a function $f(x)$ over the interval $[a,b]$ that are easier than computing limits of Riemann sums. As with derivatives, however, the definition is important because it is only through the definition that we can understand why the integral gives the answers to particular problems.

▷ The main ideas of the Fundamental Theorem of Calculus:

The easiest procedure for computing definite integrals is not by computing a limit of a Riemann sum, but by relating integrals to (anti)derivatives. This relationship is so important in Calculus that the theorem that describes the relationships is called the Fundamental Theorem of Calculus.

We introduce the theorem by first analyzing the following example.

Example 1: Find a formula for $A(x) = \int_{1}^{x} (4t + 2) \, dt$, that is, evaluate the definite integral of the function $f(t) = 4t + 2$ over the interval $[1, x]$ inside $[1, 10]$.

(Hint: think of this definite integral as an area.)

Find the values $A(5), A(10), A(1)$. What is the derivative of $A(x)$ with respect to x?

\[
A'(x) = \frac{d}{dx} \left(\int_{1}^{x} (4t + 2) \, dt \right) = 4x + 2.
\]

Observations: There are two important things to notice about the function $A(x)$ analyzed in Example 1:

\[
A(1) = \int_{1}^{1} (4t + 2) \, dt = 0 \quad \quad \quad A'(x) = \frac{d}{dx} \left(\int_{1}^{x} (4t + 2) \, dt \right) = 4x + 2.
\]

136
Suppose that for any function $f(t)$ it were true that the area function $A(x) = \int_a^x f(t) \, dt$ satisfies

$$A(a) = \int_a^a f(t) \, dt = 0 \quad A'(x) = \frac{d}{dx} \left(\int_a^x f(t) \, dt \right) = f(x).$$

Moreover, suppose that $F(x)$ is any function whose derivative also equals $f(x)$, so that $F'(x) = f(x) = A'(x)$. Any such function $F(x)$ is called an antiderivative of $f(x)$. By a consequence of the Mean Value Theorem that we studied in Chapter 6, we have that there is a constant value c such that $F(x) = A(x) + c$.

All these facts put together help us easily evaluate $\int_a^b f(t) \, dt$. Indeed,

$$\int_a^b f(t) \, dt = A(b) = A(b) - 0 = \frac{A(b) - A(a)}{b-a} = \frac{[A(b) + c] - [A(a) + c]}{b-a} = \frac{F(b) - F(a)}{b-a}.$$

The above ‘speculations’ are actually true for any continuous function on the interval over which we are integrating. These results are stated in the following theorem, which is divided into two parts:

The Fundamental Theorem of Calculus:

PART I: Let $f(t)$ be a continuous function on the interval $[a, b]$. Then the function $A(x)$, defined by the formula

$$A(x) = \int_a^x f(t) \, dt$$

for all x in the interval $[a, b]$, is an antiderivative of $f(x)$, that is

$$A'(x) = \frac{d}{dx} \left(\int_a^x f(t) \, dt \right) = f(x)$$

for all x in the interval $[a, b]$.

PART II: Let $F(x)$ be any antiderivative of $f(x)$ on $[a, b]$, so that

$$F'(x) = f(x)$$

for all x in the interval $[a, b]$. Then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Special notations: The above theorem tells us that evaluating a definite integral is a two-step process: find any antiderivative $F(x)$ of the function $f(x)$ and then compute the difference $F(b) - F(a)$. A notation has been devised to separate the two steps of this process: $F(x) \bigg|_a^b$ stands for the difference $F(b) - F(a)$. Thus

$$\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a).$$
Some properties of definite integrals:

1. \[\int_a^a f(x) \, dx = 0 \]

2. \[\int_a^b k f(x) \, dx = k \int_a^b f(x) \, dx \]

3. \[\int_a^b (f(x) \pm g(x)) \, dx = \left(\int_a^b f(x) \, dx \right) \pm \left(\int_a^b g(x) \, dx \right) \]

4. \[\int_a^b f(x) \, dx + \int_a^b f(x) \, dx = \int_a^c f(x) \, dx \]

5. \[\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \]

6. If \(m \leq f(x) \leq M \) on \([a, b]\) then \(m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a) \)

Geometric illustration of some of the above properties:

Property 3. says that if \(f \) and \(g \) are positive valued functions with \(f \) greater than \(g \). Then

\[\int_a^b (f(x) - g(x)) \, dx \]

gives the area between the graphs of \(f \) and \(g \)

\[\int_a^b f(x) \, dx - \int_a^b g(x) \, dx \]

Property 4. says that if \(f(x) \) is a positive valued function then the area underneath the graph of \(f(x) \) between \(a \) and \(b \) plus the area underneath the graph of \(f(x) \) between \(b \) and \(c \) equals the area underneath the graph of \(f(x) \) between \(a \) and \(c \).

Property 5. follows from Properties 4. and 1. by letting \(c = a \). Alternatively, the Fundamental Theorem of Calculus gives us

\[\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) = \left[-F(a) - F(b)\right] = -[F(a) - F(b)] = -F(x) \bigg|_b^a = -\int_b^a f(x) \, dx. \]

Property 6. is illustrated in the picture that accompanies the proof of the Fundamental Theorem of Calculus.

An idea of the proof of the Fundamental Theorem of Calculus:

We already gave an explanation of why the second part of the Fundamental Theorem of Calculus follows from the first one. To prove the first part we need to use the definition of the derivative. More precisely, we must show that

\[A'(x) = \lim_{h \to 0} \frac{A(x + h) - A(x)}{h} = f(x). \]

For convenience, let us assume that \(f \) is a positive valued function. Given that \(A(x) \) is defined by \(\int_a^x f(t) \, dt \), the numerator of the above difference quotient is

\[A(x + h) - A(x) = \int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt. \]

Using properties 4. and 5. of definite integrals, the above difference equals \(\int_x^{x+h} f(t) \, dt \). As the function \(f \) is continuous over the interval \([x, x + h]\), the Extreme Value Theorem says that there are values \(c_1 \) and \(c_2 \) in \([x, x + h]\) where \(f \) attains the minimum and maximum values, say \(m \) and \(M \), respectively. Thus \(m \leq f(t) \leq M \) on \([x, x + h]\). As the length of the interval \([x, x + h]\) is \(h \), by property 6. of definite integrals we have that

\[f(c_1)h = mh \leq \int_x^{x+h} f(t) \, dt \leq Mh = f(c_2)h \quad \text{or, equivalently,} \quad f(c_1) \leq \frac{\int_x^{x+h} f(t) \, dt}{h} \leq f(c_2). \]

Finally, as \(f \) is continuous we have that \(\lim_{h \to 0} f(c_1) = f(x) = \lim_{h \to 0} f(c_2) \). This concludes the proof.
Computing some antiderivatives and definite integrals:

Based on Part II of the Fundamental Theorem of Calculus, we can see that antiderivatives play an important role in Calculus. They are helpful in evaluating $\int_a^b f(x) \, dx$. This leads to the following definition.

Definition of the indefinite integral: The *indefinite integral* of $f(x)$, denoted by

$$\int f(x) \, dx$$

without limits of integration, is the *general* antiderivative of $f(x)$.

For example, it is easy to check that $\int 3t^2 \, dt = t^3 + c$, where c is any constant. Thus, if we then want to compute $\int_0^x 3t^2 \, dt$, the Fundamental Theorem of Calculus tells us that

$$\int_0^x 3t^2 \, dt = t^3 + c \bigg|_0^x = (x^3 + c) - (0^3 + c) = x^3.$$

The formulas below can be verified by differentiating the righthand side of each expression.

Some basic indefinite integrals:

1. $\int x^n \, dx = \frac{1}{n+1} x^{n+1} + c$ \hspace{1cm} n ≠ -1

2. $\int \frac{1}{x} \, dx = \ln |x| + c$

3. $\int e^x \, dx = e^x + c$

Rules for indefinite integrals:

A. $\int c f(x) \, dx = c \int f(x) \, dx$

B. $\int (f(x) \pm g(x)) \, dx = \left(\int f(x) \, dx \right) \pm \left(\int g(x) \, dx \right)$

Example 2: Evaluate the integrals $\int (t^3 + 3t^2 + 4t + 9) \, dt$ and $\int_0^x (t^3 + 3t^2 + 4t + 9) \, dt$.

\[\begin{align*}
&\frac{1}{3+1} t^{3+1} + 3 \frac{1}{2+1} t^{2+1} + 4 \frac{1}{1+1} t^{1+1} + 9 \cdot t + C \\
&= \frac{1}{4} t^4 + \frac{3}{2} t^2 + 4t + 9t + C \\
&\bigg| \left(\frac{1}{4} t^4 + t^2 + 3t^2 + 9\right) \bigg|_0^x = \left(\frac{1}{4} x^4 + x^2 + 3x^2 + 9\right) - \left(\frac{1}{4} \cdot 0^4 + 0^2 + 3 \cdot 0^2 + 9\right) \\
&= \frac{1}{4} x^4 + x^2 + 3x^2 + 9x
\end{align*}\]

Example 3: Evaluate the integrals $\int_0^6 \frac{t}{\sqrt{t}} \, dt$ and $\int_3^x \frac{6}{\sqrt{t}} \, dt$.

\[\begin{align*}
&\int_0^6 t^{1/2} \, dt = 6 \cdot \frac{1}{1+1/2} t^{1-1/2} + C = 12 \cdot t^{1/2} + C \\
&\bigg| \left(12 t^{1/2}\right) \bigg|_0^6 = \left(12 \cdot 6^{1/2}\right) - \left(12 \cdot 0^{1/2}\right) = 12 \sqrt{6} - 0
\end{align*}\]
Warning: We do not have simple derivative rules for products and quotients, so we should not expect simple integral rules for products and quotients.

Example 4: Evaluate the integrals \(\int_0^x t^3(t+2) \, dt \) and \(\int_0^x t^3(t+2) \, dt \).

\[
\begin{align*}
\int \frac{1}{4+1} t^{4+1} + \frac{1}{3+1} t^{3+1} + C \\
\Rightarrow \int_0^x t^3(t+2) \, dt &= \left(\frac{1}{5} t^{5+1} + \frac{1}{2} t^{4+1} + C \right) \bigg|_0^x \\
&= \left(\frac{1}{5} x^5 + \frac{1}{2} x^4 \right) - \left(\frac{1}{5} 0^5 + \frac{1}{2} 0^4 \right) \\
&= \frac{1}{5} x^5 + \frac{1}{2} x^4 \\
\int_0^x t^3(t+2) \, dt &= \left(\frac{1}{5} t^{5+1} + \frac{1}{2} t^{4+1} \right) \bigg|_0^x \\
&= \frac{1}{5} x^5 + \frac{1}{2} x^4 \\
\end{align*}
\]

Example 5: Evaluate the integrals \(\int_1^T \frac{x^2+9}{x^3} \, dx \) and \(\int_1^T \frac{x^2+9}{x^3} \, dx \).

\[
\begin{align*}
\int_1^T \frac{x^2+9}{x^3} \, dx &= 1 + \frac{9}{x^2} \bigg|_1^T \\
&= 1 + 9T^{-2} - \frac{1}{x^2} \\
\int_1^T \frac{x^2+9}{x^3} \, dx &= \int_1^T 1 + 9x^{-2} \, dx = x + 9 \left(\frac{1}{-2+1} \right) x^{-2+1} + C \\
&= x - 9x^{-1} + C \\
\int_1^T \frac{x^2+9}{x^3} \, dx &= \left(T - 9T^{-1} \right) - \left(\frac{1}{x^2} \right) \\
&= T - 9T^{-1} + 8 \\
\end{align*}
\]

Example 6: Compute the derivative of \(F(x) \) if \(F(x) = \int_2^x (t^4 + t^3 + t + 9) \, dt \).

\[
\begin{align*}
\frac{d}{dx} \int_2^x (t^4 + t^3 + t + 9) \, dt &= x^4 + x^3 + x + 9 \\
\text{Evaluate integrand at upper limit of integration.}
\end{align*}
\]
Example 7: Compute the derivative of \(g(s) \) if \(g(s) = \int_5^s \frac{8}{\sqrt{u^2 + u + 2}} \, du \).

Fundamental Theorem, part 2:

\[
\frac{d}{ds} \int_5^s \frac{8}{\sqrt{u^2 + u + 2}} \, du = \frac{8}{\sqrt{s^2 + s + 2}}
\]

Evaluate at upper limit, \(s \).

Example 8: Suppose \(f(x) = \int_1^x \sqrt{t^2 - 7t + 12.25} \, dt \). For which positive value of \(x \) does \(f'(x) \) equal 0?

First,

\[
f'(x) = \frac{d}{dx} \int_1^x \sqrt{t^2 - 7t + 12.25} \, dt = \sqrt{x^2 - 7x + 12.25}
\]

Now, \(f'(x) = 0 \)

\[
\Rightarrow \sqrt{x^2 - 7x + 12.25} = 0 \Rightarrow x^2 - 7x + 12.25 = 0
\]

\[
\Rightarrow (x - 3.5)^2 = 0
\]

\[
\Rightarrow x = 3.5
\]

Example 9:

Find the value of \(x \) at which \(F(x) = \int_3^x (t^8 + t^6 + t^4 + t^2 + 1) \, dt \) takes its minimum on the interval \([3, 100]\).

The value of \(x \) that gives a minimum of \(F(x) \) is **3**.

\[
F'(x) = \frac{d}{dx} \int_3^x (t^8 + t^6 + t^4 + t^2 + 1) \, dt = x^8 + x^6 + x^4 + x^2 + 1
\]

\(F'(x) \) always positive, so minimum occurs at left endpoint, \(x = 3 \).
Example 10:

Find the value of x at which $G(x) = \int_{-5}^{x} (|t| + 2) \, dt$ takes its maximum on the interval $[-5, 100]$.

The value of x that gives a maximum of $G(x)$ is 100.

\[G'(x) = \frac{d}{dx} \int_{-5}^{x} (|t| + 2) \, dt = 1|_{x} + 2 \]

$G'(x)$ is always positive, so $G(x)$ always increasing, so maximum occurs at right end point, $x = 100$

Example 11: Evaluate the integral \[\int_{0}^{5} (t^2 + 1) \, dt. \]

\[= \left(\frac{1}{2+1} t^{2+1} \right) \bigg|^{5}_{0} = \left(\frac{1}{3} t^{3} \right) \bigg|^{5}_{0} = \left(\frac{1}{3} (5^3 - 0) \right) - \left(\frac{1}{3} (0 + 0) \right) = \frac{125}{3} \]

Example 12: Evaluate the integral \[\int_{-2}^{2} (t^6 + t^4 + t^3 + t^2 + t + 1) \, dt. \]

\[= \left(\frac{1}{6} t^6 + \frac{1}{5} t^5 + \frac{1}{4} t^4 + \frac{1}{3} t^3 + \frac{1}{2} t^2 + t + 1 \right) \bigg|^{2}_{-2} = \left(\frac{1}{6} \cdot 2^6 + \frac{1}{5} \cdot 2^5 + \frac{1}{4} \cdot 2^4 + \frac{1}{3} \cdot 2^3 + \frac{1}{2} \cdot 2^2 + 2 + 1 \right) - \left(\frac{1}{6} \cdot (-2)^6 + \frac{1}{5} \cdot (-2)^5 + \frac{1}{4} \cdot (-2)^4 + \frac{1}{3} \cdot (-2)^3 + \frac{1}{2} \cdot (-2)^2 + (-2) + 1 \right) = \frac{332}{15} = 22.13 \]
Example 13: Evaluate the integral \(\int_{-7}^{-5} \left(\frac{1}{t} \right)^2 \, dt. \) \(= \int_{-7}^{-5} \frac{1}{t} \, dt \)

\[= -t \bigg|_{-7}^{-5} = \left[-(-5) \right] - \left[-(-7) \right] \]

\[= \frac{1}{5} - \frac{1}{7} = \frac{7 - 5}{35} = \frac{2}{35} \]

Example 14: Evaluate the integral \(\int_{-6}^{12} |t| \, dt. \)

\[\text{Area} = \frac{1}{2} \cdot 6 \cdot 6 + \frac{1}{2} \cdot 12 \cdot 12 = 18 + 72 = 90. \]

Example 15: Evaluate the integral \(\int_{0}^{2} e^x \, dx. \)

\[= e^2\bigg|_{0}^{2} = e^2 - e^0 = e^2 - 1 \]

Example 16 (Geometric meaning of the natural logarithmic function):

Show that \(\int_{0}^{x} \frac{1}{t} \, dt = \ln x \) for all \(x \geq 1. \)

\[\int_{1}^{x} \frac{1}{t} \, dt = \ln |t| \bigg|_{1}^{x} = \ln(x) - \ln(1) \]

\[= \ln x \]

In other words \(\ln x, \) with \(x \geq 1, \) gives the area of the region in the first quadrant underneath the graph of the function \(y = \frac{1}{t} \) and between 1 and \(x. \)
The average of finitely many numbers y_1, y_2, \ldots, y_n is $\bar{y} = \frac{y_1 + y_2 + \cdots + y_n}{n}$. What if we are dealing with infinitely many values? More generally, how can we compute the average of a function f defined on an interval?

Average of a function: The average of a function f on an interval $[a, b]$ equals the integral of f over the interval divided by the length of the interval:

$$f_{\text{ave}} = \frac{\int_a^b f(x) \, dx}{b - a}.$$

Geometric meaning: If f is a positive valued function, f_{ave} is that number such that the rectangle with base $[a, b]$ and height f_{ave} has the same area as the region underneath the graph of f from a to b.

Example 17: What is the average of $f(x) = x^3$ over the interval $[0, 6]$?

$$\frac{1}{6 - 0} \int_0^6 x^3 \, dx = \frac{1}{6} \cdot \left. \frac{x^4}{4} \right|_0^6 = \frac{1}{6} \cdot 6^4 - \frac{1}{6} \cdot 0^4 = 12$$

The substitution rule for integrals: If $u = g(t)$ is a differentiable function whose range is a subinterval I and f is continuous on I, then

$$\int f(g(t)) g'(t) \, dt = \int f(u) \, du.$$

In case of definite integrals the substitution rule becomes

$$\int_a^b f(g(t)) g'(t) \, dt = \int_{g(a)}^{g(b)} f(u) \, du.$$

Example 18: Evaluate the integral $\int_0^x (t + 9)^2 \, dt$.

$$u = t + 9 \quad \Rightarrow \quad u = 0 \Rightarrow 0 + 9 = 9$$

$$du = dt$$

$$\int_0^x (t + 9)^2 \, dt = \int_9^{x+9} u^2 \, du = \frac{1}{3} \left. u^3 \right|_9^{x+9} = \frac{1}{3} (x+9)^3 - \frac{1}{3} \cdot 9^3 = \frac{1}{3} (x+9)^3 - 243$$

Example 19: Evaluate the integral $\int_0^x \sqrt{3t+7} \, dt$.

$$u = 3t + 7 \quad \Rightarrow \quad u = 0 \Rightarrow 3 \cdot 0 + 7 = 7$$

$$du = 3 \, dt \quad \Rightarrow \quad dt = \frac{1}{3} \, du$$

$$\int_0^x \sqrt{3t+7} \, dt = \int_7 \sqrt{u} \, \frac{1}{3} \, du = \frac{1}{3} \left. u^{3/2} \right|_7^{x+7} = \frac{1}{3} (3x+7)^{3/2} - \frac{2}{9} \cdot 7^{3/2} = \frac{3}{9} (3x+7)^{3/2} + \frac{14}{9}\sqrt{7}$$
Example 20: Evaluate the integral \(\int_0^x \frac{1}{(5t+4)^2} dt \).

\[
\begin{align*}
\text{Let } u &= 5t + 4 \\
\text{Then } du &= 5 \, dt \\
\Rightarrow dt &= \frac{1}{5} \, du \\
\therefore \int_0^x \frac{1}{(5t+4)^2} \, dt &= \int_0^{5_1 \cdot 4} \frac{1}{u^2} \cdot \frac{1}{5} \, du = \frac{1}{5} \int_4^{5x+4} u^{-2} \, du = -\frac{1}{5} \cdot u^{-1} \Bigg|_4^{5x+4} \\
&= -\frac{1}{5} \left[\frac{1}{5x+4} - \frac{1}{4} \right] = \frac{x}{(5x+4) \cdot 4}
\end{align*}
\]

Example 21: Evaluate the integral \(\int_0^5 \sqrt{2t+1} \, dt \).

\[
\begin{align*}
\text{Let } u &= 2t + 1 \\
\text{Then } du &= 2 \, dt \\
\Rightarrow dt &= \frac{1}{2} \, du \\
\therefore \int_0^5 \sqrt{2t+1} \, dt &= \int_0^5 u^{1/2} \cdot \frac{1}{2} \, du = \frac{1}{2} \int_1^{11} u^{1/2} \, du \\
&= \frac{1}{3} \left(11^{3/2} - 1 \right) \\
&= \frac{1}{3} \left(11\sqrt{11} - 1 \right)
\end{align*}
\]

Example 22: Evaluate the integral \(\int_0^{-2x e^{-x^2}} dx \).

\[
\begin{align*}
\text{Let } u &= -x^2 \\
\text{Then } du &= -2x \, dx \\
\Rightarrow dx &= \frac{1}{2x} \, du \\
\therefore \int_0^{-2x e^{-x^2}} dx &= \int_0^{-1} u^{-1/2} \, du \\
&= -\int_0^{-1} e \, du = -\left[e^{-x} \right]_0^{-1} \\
&= -\left[1 - e^{-1} \right] = \frac{1 - e}{e}
\end{align*}
\]

Example 23: Evaluate the integral \(\int_0^3 \frac{2x}{x^2 + 1} \, dx \).

\[
\begin{align*}
\text{Let } u &= x + 1 \\
\text{Then } du &= 2x \, dx \\
\Rightarrow dx &= \frac{1}{2x} \, du \\
\therefore \int_0^3 \frac{2x}{x^2 + 1} \, dx &= \int_1^{10} \frac{u}{u} \cdot \frac{1}{2x} \, du \\
&= \int_1^{10} \frac{1}{u} \, du \\
&= \left[\ln |u| \right]_1^{10} \\
&= \ln(10) - \ln(1) = \ln(10)
\end{align*}
\]
Example 24: Compute the derivative of \(F(x) \) if \(F(x) = \int_0^x 2t \, dt \).

(Hint: Write \(F(x) = g(f(x)) \) where \(f(x) = x^2 \) and \(g(x) = \int_0^x 2t \, dt \) and use the chain rule to find \(F'(x) \)).

\[
F(x) = g(f(x)) \quad \Rightarrow \quad F'(x) = g'(f(x)) \cdot f'(x) = 2x^2 \cdot 2x = 4x^3
\]

Now,
\[
g'(f(x)) = \frac{d}{dx} \int_0^x 2t \, dt = 2x, \quad \text{so} \quad g'(f(x)) = g'(x^2) = 2x^2, \quad \text{and}
\]
\[
f(x) = x^2 \Rightarrow (x^2)' = 2x, \quad \text{so} \quad -
\]

General formula: If \(F(x) = \int_a^x H(t) \, dt \) then \(F'(x) = \frac{d}{dx} \int_a^x H(t) \, dt = H(f(x)) \cdot f'(x) \).

Word problems:

If the velocity \(v(t) \) of an object at time \(t \) is always positive, then the area underneath the graph of the velocity function and lying above the \(t \)-axis represents the total distance traveled by the object from \(t = a \) to \(t = b \).

Example 25: A train travels along a track and its velocity (in miles per hour) is given by \(v(t) = 76t \) for the first half hour of travel. Its velocity is constant and equal to \(v(t) = 76/2 \) after the first half hour. Here time \(t \) is measured in hours. How far (in miles) does the train travel in the first hour of travel?

\[
\text{Dist} = \int_0^1 v(t) \, dt
\]
\[
= \int_0^{1/2} 76t \, dt + \int_{1/2}^1 76/2 \, dt
\]
\[
= 76 \cdot \frac{1}{2} t^2 \bigg|_0^{1/2} + 38 \cdot t \bigg|_{1/2}^1
\]
\[
= 38 \left(\frac{1}{4} - 0^2 \right) + 38 \left[1 - \frac{1}{2} \right]
\]
\[
= 9.5 + 19 = 28.5
\]

Example 26: A train travels along a track and its velocity (in miles per hour) is given by \(v(t) = 76t \) for the first half hour of travel. Its constant is constant and equal to \(v(t) = 76/2 \) after the first half hour. Here time \(t \) is measured in hours. How far (in miles) does the train travel in the second hour of travel?

\[
\text{Dist} = \int_1^2 v(t) \, dt
\]
\[
= \int_1^2 \frac{76}{2} \, dt = \frac{76}{2} t \bigg|_1^2
\]
\[
= 38(2 - 1) = 38
\]
Example 27: A rock is dropped from a height of 21 feet. Its velocity in feet per second at time t after it is dropped is given by $v(t) = -32t$ where time t is measured in seconds. How far is the rock from the ground one second after it is dropped?

$$\text{Distance Fallen} = \int_0^1 -32t\,dt$$

$$= -16t^2\bigg|_0^1 = 16\cdot 1^2 = 16$$

Distance from ground = 21 - 16 = 5 ft

Example 28:

Suppose an object is dropped from a cliff and its velocity in ft/sec after t seconds is given by $v(t) = 10t + 5$. If the object lands after 7 seconds, how high (in ft) is the cliff? (Hint: how far did the object travel?)

$$\text{Distance Fallen} = \int_0^7 (10t + 5)\,dt$$

$$= \left(5t^2 + 5t\right)_0^7 = 5\cdot 7^2 + 5\cdot 7 = 280 \text{ ft}$$

Example 29 (A distance traveled problem revisited):

A car is traveling due east. Its velocity (in miles per hour) at time t hours is given by $v(t) = -2.5t^2 + 10t + 50$.

How far did the car travel during the first five hours of the trip?

$$\int_0^5 (-2.5t^2 + 10t + 50)\,dt = (-0.5\left(\frac{1}{3}t^3\right) + 10t^2 + 50t)|_0^5$$

$$= -0.5\cdot 5^3 + 5\cdot 5^2 + 50\cdot 5$$

$$= 270.83333 \text{ miles}$$