\qquad Sec.: \qquad

Do not remove this answer page - you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.
The exam consists of multiple choice questions. Record your answers on this page. For each multiple choice question, you will need to fill in the box corresponding to the correct answer. For example, if (b) is correct, you must write

Do not circle answers on this page, but please circle the letter of each correct response in the body of the exam. It is your responsibility to make it CLEAR which response has been chosen. You will not get credit unless the correct answer has been marked on both this page and in the body of the exam.

GOOD LUCK!

For grading use:

Please make sure to list the correct section number on the front page of your exam. In case you forgot your section number, consult the following table. Your section number is determined by your recitation time and location.

Section \#	Instructor	Day and Time	Room
001	F. Smith	T, 8:00 am - 9:15 am	CB 213
002	W. Hough	R, 8:00 am - 9:15 am	CB 213
003	D. Akers	T, 12:30 pm - 1:45 pm	CB 342
004	W. Hough	R, 9:30 am - 10:45 am	CP 397
005	D. Akers	T, 11:00 am - 12:15 pm	TPC 212
006	W. Hough	R, 11:00 am - 12:15 pm	TPC 113
007	A. Happ	T, 2:00 pm - 3:15 pm	TPC 109
008	A. Hubbard	R, 2:00 pm - 3:15 pm	L 108
009	A. Happ	T, 11:00 am - 12:15 pm	TPC 113
010	A. Hubbard	R, 11:00 am - 12:15 pm	CB 340
011	A. Happ	T, 12:30 pm - 1:45 pm	TEB 231
012	A. Hubbard	$\mathrm{R}, 12: 30 \mathrm{pm}-1: 45 \mathrm{pm}$	EH 307
013	L. Solus	T, 11:00 am - 12:15 pm	CB 340
014	D. Akers	R, 11:00 am - 12:15 pm	TPC 101
015	L. Solus	T, 12:30 pm - 1:45 pm	OT 0B7
016	F. Smith	$\mathrm{R}, 12: 30 \mathrm{pm}-1: 45 \mathrm{pm}$	FB B4
017	L. Solus	T, 2:00 pm - 3:15 pm	FB B4
018	F. Smith	R, 2:00 pm - 3:15 pm	CB 245
019	X. Kong	T, 3:30 pm - 4:45 pm	BH 303
020	Q. Liang	R, 3:30 pm - 4:45 pm	EGJ 115
021	X. Kong	T, 12:30 pm - 1:45 pm	CB 205
022	X. Kong	R, 2:00 pm - 3:15 pm	CB 233
023	L. Davidson	T, 9:30 am - 10:45 am	OT 0B7
024	L. Davidson	R, 9:30 am - 10:45 am	OT 0B7
026	L. Davidson	R, 8:00 am - 9:15 am	CB 243
027	Q. Liang	T, 9:30 am-10:45 am	DH 131

Multiple Choice Questions

Show all your work on the page where the question appears.
Clearly mark your answer both on the cover page on this exam and in the corresponding questions that follow.

1. Suppose that

$$
\frac{f(x+h)-f(x)}{h}=8 x^{2}-5 h+4
$$

and $f(1)=4$. Find the equation of the tangent line to the graph of $y=f(x)$ at $x=1$.

Possibilities:

(a) $y=8 x+4$
(b) $y=12 x-4$
(c) $y=16 x-5$
(d) $y=12 x-8$
(e) $y=16 x+4$
2. If $f(x)=(x+15)^{2}$, then

$$
\frac{f(x+h)-f(x)}{h}=A x+B h+C .
$$

Determine the value of B.

Possibilities:

(a) -2
(b) -1
(c) 0
(d) 1
(e) 2
3. If $H(t)=2 t^{3}+4 t^{2}+5 t+3, \quad$ find $H^{\prime}(t)$.

Possibilities:

(a) $6 t^{2}+8 t+8$
(b) $6 t^{3}+8 t^{2}+5 t+3$
(c) 19
(d) 22
(e) $6 t^{2}+8 t+5$
4. If $\quad Y(s)=\frac{1}{3 s^{5}}, \quad$ then find $Y^{\prime}(s)$.

Possibilities:

(a) $\frac{1}{15 s^{4}}$
(b) $-15 s^{-4}$
(c) $-15 s^{-6}$
(d) $\frac{-5}{3} s^{-6}$
(e) $\frac{-5}{3} s^{-4}$
5. Suppose $\quad h(x)=x^{2}+7 x+5, \quad g(3)=2, \quad g^{\prime}(3)=-4, \quad$ and $F(x)=g(x) \cdot h(x) . \quad$ Find $F^{\prime}(3)$.

Possibilities:

(a) -52
(b) -114
(c) 166
(d) -110
(e) 70
6. If $f(s)=\left(s^{2}+3 s+8\right)^{8}, \quad$ find $f^{\prime}(s)$.

Possibilities:

(a) $15 s^{15}+3 s^{7}+8$
(b) $8\left(s^{2}+3 s+8\right)^{7}$
(c) $8(2 s+3) \cdot\left(s^{2}+3 s+8\right)^{7}$
(d) $16\left(s^{2}+3 s+8\right)^{7}$
(e) $8(2 s+8)^{7}$
7. If $f(x)=(3 x+5)^{7}$, find the second derivative $f^{\prime \prime}(x)$.

Possibilities:

(a) $126 x^{5}$
(b) $42(3 x+5)^{5}$
(c) $126(3 x+5)^{5}$
(d) $378 x^{5}$
(e) $378(3 x+5)^{5}$
8. Suppose $F(x)=g(h(x))$. If $g(2)=2, g^{\prime}(2)=7, \quad h(0)=2$, and $h^{\prime}(0)=3$, find $F^{\prime}(0)$.

Possibilities:

(a) 8
(b) 20
(c) 6
(d) 14
(e) 21
9. Find the 14 th derivative, $f^{(14)}(x)$, where

$$
f(x)=e^{4 x}
$$

Possibilities:

(a) 0
(b) $4^{14} e^{4 x}$
(c) $14 e^{4 x}$
(d) $14^{4} e^{4 x}$
(e) $4 e^{4 x-1}$
10. If

$$
f(x)=\ln (3 x+11),
$$

find $f^{\prime}(x)$.

Possibilities:

(a) $\frac{1}{3 x+11}$
(b) 3
(c) $e^{3 x+11}$
(d) $\frac{3}{x}+\frac{1}{11}$
(e) $\frac{3}{3 x+11}$
11. Let

$$
g(s)=\frac{5 s+2}{s^{2}+3 s+17}
$$

Find the derivative $g^{\prime}(s)$.

Possibilities:

(a) $5\left(s^{2}+3 s+17\right)-(5 s+2)(2 s+3)$
(b) $\frac{(5 s+2)(2 s+3)-5\left(s^{2}+3 s+17\right)}{\left(s^{2}+3 s+17\right)^{2}}$
(c) $\frac{5 s+2}{s^{2}+3 s+17}$
(d) $\frac{5\left(s^{2}+3 s+17\right)-(5 s+2)(2 s+3)}{\left(s^{2}+3 s+17\right)^{2}}$
(e) $5\left(s^{2}+3 s+17\right)+(5 s+2)(2 s+3)$
12. If

$$
f(x)=x^{5} e^{7 x},
$$

find the first derivative, $f^{\prime}(x)$.

Possibilities:

(a) $5 x^{4} e^{7 x}+x^{5} e^{7 x}$
(b) $35 x^{4} e^{7 x}$
(c) $5 x^{4} e^{7 x}-7 x^{5} e^{7 x}$
(d) $\frac{5 x^{4} e^{7 x}+7 x^{5} e^{7 x}}{e^{14 x}}$
(e) $5 x^{4} e^{7 x}+7 x^{5} e^{7 x}$
13. The graph of $y=f(x)$ passes through the point $(0,13)$. The slope of the tangent line to $y=f(x)$ at any point P is 2 times the y-coordinate of P. Find $f(1)$.

Possibilities:

(a) 11
(b) $2 e^{13}$
(c) $13 e^{2}$
(d) $26 e^{2}$
(e) 15
14. If the number of bacteria in a culture doubles every 3 hours, how many hours will it take before 5 times the original number is present? (HINT: The number of bacteria at time t follows an exponential model, $y(t)=P_{0} e^{r t}$. You may need to find the value of r before you can solve this problem.)

Possibilities:

(a) $5 / 2$
(b) $\frac{\ln (3)}{2}$
(c) 4
(d) $\frac{3 \ln (5)}{\ln (2)}$
(e) $\frac{5 \ln (3)}{\ln (2)}$
15. Let

$$
f(x)=|x-4| .
$$

Compute

$$
\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h} .
$$

Possibilities:

(a) -4
(b) 0
(c) This limit does not exist
(d) 1
(e) 4
16. Suppose the equation of the tangent line to the graph of $g(x)$ at $x=2$ is

$$
y=6+11(x-2)
$$

Find $g(2)$ and $g^{\prime}(2)$.

Possibilities:

(a) $g(2)=6$ and $g^{\prime}(2)=11$
(b) $g(2)=2$ and $g^{\prime}(2)=6$
(c) $g(2)=11$ and $g^{\prime}(2)=6$
(d) $g(2)=2$ and $g^{\prime}(2)=11$
(e) $g(2)=6$ and $g^{\prime}(2)=2$
17. Find the value of t in the interval $[0,4]$ where $f(t)=2 t^{3}-6 t^{2}-18 t-10$ attains its minimum value.

Possibilities:

(a) $t=0$
(b) $t=-64$
(c) $t=4$
(d) $t=3$
(e) $t=-1$
18. Find the minimum value of $f(x)=|x-5|+14$ on the interval $[2,9]$.

Possibilities:

(a) 5
(b) 2
(c) 18
(d) 14
(e) 17
19. Let $f(x)=x^{2}+3 x-2$. Find a value c between $x=0$ and $x=4$ so that the average rate of change of $f(x)$ from $x=0$ to $x=4$ is equal to the instantaneous rate of change of $f(x)$ at $x=c$.

Possibilities:

(a) 2
(b) 26
(c) 11
(d) 7
(e) 12
20. In the previous problem, you were given a function $f(x)$ which was differentiable on an interval $[a, b]$, and you found some number c satisfying $a<c<b$ so that the instantaneous rate of change of $f(x)$ at $x=c$ was equal to the average rate of change from $x=a$ to $x=b$. Which theorem states that the above problem must have a solution?

Possibilities:

(a) Mean value theorem
(b) Extreme value theorem
(c) Fermat's theorem
(d) Pythagorean theorem
(e) Fundamental theorem of calculus

