MA123 - Elem. Calculus Spring 2016 Exam 3 2016-04-14

Name: \qquad Sec.: \qquad

Do not remove this answer page - you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during the exam, but NO calculator with a Computer Algebra System (CAS), networking, or camera is permitted. Absolutely no cell phone use during the exam is allowed.
The exam consists of two short answer questions and eighteen multiple choice questions. Answer the short answer questions on the back of this page, and record your answers to the multiple choice questions on this page. For each multiple choice question, you will need to fill in the circle corresponding to the correct answer. It is your responsibility to make it CLEAR which response has been chosen. For example, if (a) is correct, you must write
(a) b c de

You have two hours to do this exam. Please write your name on this page, and at the top of page three.

GOOD LUCK!

3. (a) b d e
4. (a) b c d e
5. (a) b c d e
6. (a) b c d e
7. (a) b c d e
8. (a) b c d e
9. (a) b c d e
10. (a) b c d e
11. (a) b c d e
12. (a) b c d e
13. (a) b d e
14. (a) b c d e
15. (a) b d e
16. (a) b c d e
17. (a) b c d e
18. (a) b c d e
19. (a) b c d e
20. (a) b c d e

For grading use:

Multiple Choice	Short Answer
(number right) (5 points each)	(out of 10 points)

Total	
	(out of 100 points)

1. Sketch the graph of a continuous function $y=f(x)$ which satisfies the following: $f(4)=6 ; f^{\prime}(x) \geq 0$ for all $x ; f$ is concave up for $x<2$ and concave down for $x>2$.

2. Find the area of the largest rectangle with one corner at the origin, the opposite corner in the first quadrant on the graph of the parabola $f(x)=288-6 x^{2}$, and sides parallel to the axes. You must clearly use calculus to find and justify your answer.
\qquad

Multiple Choice Questions

Show all your work on the page where the question appears. Clearly mark your answer both on the cover page on this exam and in the corresponding questions that follow.
3. Where is the function $f(t)=\frac{1}{t-46}$ decreasing?

Possibilities:
(a) $f(t)$ is never decreasing
(b) $t>46$
(c) $t<46$
(d) $-1<t<46$
(e) $f(t)$ is always decreasing except at $\mathrm{t}=46$
4. Where is the function $f(t)=\frac{1}{t-46}$ concave up?

Possibilities:

(a) $t>46$
(b) $f(t)$ is always concave up except at $\mathrm{t}=46$
(c) $t<46$
(d) $-1<t<46$
(e) $f(t)$ is never concave up
5. Suppose the derivative of $g(t)$ is $g^{\prime}(t)=2(t-9)(t-5)(t-6)$. For t in which interval(s) is g increasing?

Possibilities:

(a) $\left(\frac{20}{3}-\frac{1}{3} \sqrt{13}, \frac{20}{3}+\frac{1}{3} \sqrt{13}\right)$
(b) $(5,6) \cup(9, \infty)$
(c) $(-\infty, 5) \cup(6,9)$
(d) $(2,5) \cup(6,9)$
(e) $\left(-\infty, \frac{20}{3}-\frac{1}{3} \sqrt{13}\right) \cup\left(\frac{20}{3}+\frac{1}{3} \sqrt{13}, \infty\right)$
6. Suppose the derivative of $g(t)$ is $g^{\prime}(t)=13(t-2)(t-10)$. For t in which interval (s) is g concave up?

Possibilities:

(a) $(-\infty, 6)$
(b) $(2,10)$
(c) $(-\infty, 2) \cup(10, \infty)$
(d) $(6, \infty)$
(e) $(2,6) \cup(10,13)$
7. The following is the graph of the derivative, $f^{\prime}(x)$, of the function $f(x)$.

Where is the regular function $f(x)$ decreasing?

Possibilities:

(a) $(-1, \infty)$
(b) $(-\infty, \infty)$
(c) nowhere
(d) $(-\infty,-1)$
(e) $(1, \infty)$

8. The following is the graph of the derivative, $f^{\prime}(x)$, of the function $f(x)$.

Where is the regular function $f(x)$ concave up?

Possibilities:

(a) nowhere
(b) $(-\infty, \infty)$
(c) $(1, \infty)$
(d) $(-1, \infty)$
(e) $(-\infty,-1)$

9. A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing $\$ 70$ per foot, and on the other three sides by a metal fence costing $\$ 10$ per foot. If the area of the garden is 400 square feet, find the lowest possible cost to enclose the garden.

Possibilities:

(a) $\$ 1599.50$
(b) $\$ 1600.50$
(c) $\$ 1600.00$
(d) $\$ 1601.00$
(e) $\$ 1601.50$
10. A car rental agency rents 180 cars per day at a rate of $\$ 29$ dollars per day. For each 1 dollar increase in the daily rate, 3 fewer cars are rented. At what rate should the cars be rented to produce maximum income?

Possibilities:

(a) $\$ 43.90$ per day
(b) $\$ 44.10$ per day
(c) $\$ 44.50$ per day
(d) $\$ 44.70$ per day
(e) $\$ 45.30$ per day
11. Suppose the derivative of $H(s)$ is given by $H^{\prime}(s)=-1 /\left(s^{2}+2\right)$. Find the value of s in the interval [$-10,10$] where $H(s)$ takes on its maximum.

Possibilities:

(a) 10
(b) -10
(c) -2
(d) $-\frac{1}{2}$
(e) 2
12. Find the critical numbers of the function $f(x)=x e^{2 x}$.

Possibilities:

(a) $-\frac{1}{2}, 0$
(b) $-\frac{1}{2}$
(c) 0
(d) 2
(e) $-\frac{1}{2}, 0, e^{2}$
13. Estimate the area under the graph of $-x^{2}+10 x$ for x between 4 and 10 , by using a partition that consists of 3 equal subintervals of $[4,10]$ and use the right endpoint of each subinterval as a sample point.

Possibilities:

(a) 128
(b) 40
(c) 108
(d) 6
(e) 80
14. A train travels in a straight westward direction along a track. The speed of the train varies, but it is measured at regular time intervals of $1 / 10$ hour. The measurements for the first half hour are:

$$
\begin{array}{rcccccc}
\text { time } & 0 & .1 & .2 & .3 & .4 & .5 \\
\text { speed } & 0 & 3 & 10 & 15 & 22 & 24
\end{array}
$$

Estimate the total distance (in miles) traveled by the train during the first half hour by assuming the speed is a linear function of t on the subintervals. The speed in the table is given in miles per hour. Use all six speed measurements in your estimate.

Possibilities:

(a) 6.20 miles
(b) 12.00 miles
(c) 7.50 miles
(d) 7.40 miles
(e) 1.50 miles
15. One way to approximate $\int_{8}^{A} \ln (17 x+1) \mathrm{d} x$ is with the sum $\sum_{k=1}^{200}(\Delta x) \cdot \ln (17(8+k \Delta x)+1)$ where $\Delta x=\frac{1}{8}$. What is the best value of A to use?

Possibilities:

(a) $\frac{1}{8}$
(b) 0.01
(c) 33
(d) 144.6627443
(e) 25
16. Suppose you estimate the integral

$$
\int_{2}^{11} x^{2} \mathrm{~d} x
$$

by adding the areas of n rectangles of equal length, and using the right endpoint of each subinterval to determine the height of each rectangle. If the sum you evalute is written as

$$
\sum_{k=1}^{n} \frac{A}{n}\left(2+k \frac{A}{n}\right)^{2}
$$

What value should be used for A?

Possibilities:

(a) 2
(b) 13
(c) 11
(d) 9
(e) 441
17. Evaluate the difference of sums

$$
\left(\sum_{k=1}^{30000}\left(6 k^{3}+7\right)\right)-\left(\sum_{k=3}^{30000}\left(6 k^{3}+7\right)\right)
$$

Possibilities:

(a) 0
(b) ∞
(c) 162000000000007
(d) 450015000
(e) 68
18. Evaluate the sum

$$
\sum_{k=1}^{N}\left(11 k^{2}\right)
$$

Possibilities:

(a) $11 \frac{N(N+1)(2 N+1)}{6}$
(b) $11 N^{2}-11$
(c) $11\left(\frac{N(N+1)}{2}\right)^{2}$
(d) $11 \frac{N^{2}(11 N+1)(22 N+1)}{6}$
(e) $11 \frac{N(N+1)}{2}$
19. Suppose you estimate the area under the graph of $f(x)=x^{3}$ from $x=4$ to $x=44$ by adding the areas of the rectangles as follows: partition the interval into 20 equal subintervals and use the right endpoint of each interval to determine the height of the rectangle. What is the area of the 11th rectangle?

Possibilities:
(a) 27648
(b) 31300
(c) 1024000
(d) 35152
(e) 17576
20. Evaluate the $\operatorname{sum} \frac{1}{101}+\frac{2}{101}+\frac{3}{101}+\frac{4}{101}+\frac{5}{101}+\frac{6}{101}+\frac{7}{101}+\frac{8}{101}+\cdots+\frac{2015}{101}+\frac{2016}{101}$.

Possibilities:
(a) $\frac{2033136}{101}$
(b) $\frac{4067}{101}$
(c) $\frac{4064256}{10201}$
(d) 6
(e) $\frac{2133936}{10201}$

Some Formulas

1. Summation formulas:

$$
\begin{gathered}
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \\
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

2. Areas:
(a) Triangle $A=\frac{b h}{2}$
(b) Circle $A=\pi r^{2}$
(c) Rectangle $A=l w$
(d) Trapezoid $A=\frac{h_{1}+h_{2}}{2} b$

3. Volumes:

(a) Rectangular Solid $\quad V=l w h$
(b) Sphere $V=\frac{4}{3} \pi r^{3}$
(c) Cylinder $\quad V=\pi r^{2} h$
(d) Cone $\quad V=\frac{1}{3} \pi r^{2} h$

4. Distance:

(a) Distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

MA123 - Elem. Calculus Spring 2016 Exam 3 2016-04-14

Name: \qquad Sec.: \qquad

Do not remove this answer page - you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during the exam, but NO calculator with a Computer Algebra System (CAS), networking, or camera is permitted. Absolutely no cell phone use during the exam is allowed.
The exam consists of two short answer questions and eighteen multiple choice questions. Answer the short answer questions on the back of this page, and record your answers to the multiple choice questions on this page. For each multiple choice question, you will need to fill in the circle corresponding to the correct answer. It is your responsibility to make it CLEAR which response has been chosen. For example, if (a) is correct, you must write
(a) b c de

You have two hours to do this exam. Please write your name on this page, and at the top of page three.

GOOD LUCK!

3. (a) b d e
4. (a) b c d e
5. (a) b d e
6. (a) b c d (e)
7. (a) b c d e
8. (a) b c d e
9. (a) b c d e
10. (a) b c d e
11. (a) b c d e
12. (a) b c d e
13. (a) b c d e
14. (a) b c d e
15. (a) b d e
16. (a) b c d e
17. (a) b c d e
18. (a) b c d e
19. (a) b c d e
20. (a) b c d e

For grading use:

Multiple Choice	Short Answer
(number right) \quad (5 points each)	(out of 10 points)

Total	
	(out of 100 points)

