MA123 — Elem. Calculus Exam 2	Spring 2019 2019-3-7	Name: _	Solution	<u>S</u> s	Sec.:
Do not remove this answer pag You may use an ACT-approved System (CAS), networking, or allowed.	calculator during	the exam, but	NO calculator w	ith a Co	omputer Algebra
The exam consists of two short a answer questions on the back of this page. For each multiple cho answer. It is your responsibility is correct, you must write	f this page, and roice question, you	ecord your ans will need to fill	swers to the mult in the circle corr	iple cho espondi	oice questions on ng to the correct
	a b	(c) (d) (e)			
You have two hours to do this e	xam. Please write	e your name an	d section number	on this	s page.

GOOD LUCK!

3. (a) (b) (c) (d) (e)	12. a b c d e
4. (a) (b) (c) (d) (e)	13. (a) (b) (c) (d) (e)
5. (a) (b) (c) (d) (e)	14. a b c d e
6. (a) (b) (c) (d) (e)	15. (a) (b) (c) (d) (e)
7. a b c d e	16. (a) (b) (c) (d) (e)
8. (a) (b) (c) (d) (e)	17. a b c d e
9. (a) (b) (c) (d) (e)	18. (a) (b) (c) (d) (e)
10. (a) (b) (c) (d) (e)	19. (a) (b) (c) (d) (e)
11. (a) (b) (c) (d) (e)	20. (a) (b) (c) (d) (e)

For grading use:

Multiple Choice	Short Answer		
(number right) (5 points each)	(out of 10 points)		

Spring 2019 Exam 2 Short Answer Questions

Write answers on this page. Your work must be clear and legible to be sure you will get full credit.

1. Let $H(x) = e^{g(x)} f(3x^2 + 10)$. Find the derivative, H'(x). **DO NOT SIMPLIFY** your answer. Clearly (circle) your final answer.

Need to use product rule and chain rule

Product $H(x) = (e^{g(x)})^{1} f(3x^{2}+10) + e^{g(x)} (f(3x^{2}+10))^{1}$ $= e^{g(x)} g'(x) f(3x^{2}+10) + e^{g(x)} f'(3x^{2}+10) - (6x)$ chain

wile

2. The cost function and revenue function (in dollars) for the production and sale of x espresso machines are given as C(x) = 46000 + 50x and $R(x) = 285x - \frac{x^2}{80}$.

Find and simplify the **profit function** and the **marginal profit function**. Circle both of your final answers.

$$P(x) = R(x) - C(x) = 285x - \frac{x^2}{80} - (46000 + 50x)$$

$$P(x) = P(x) = -\frac{x^2}{80} + 235x - 46000$$
Function

marginal profit
$$\rightarrow P(x) = -\frac{2x}{80} + 235$$

$$P(x) = -\frac{x}{40} + 235$$

f'(x)=21x2+16x+9

Name:

Multiple Choice Questions

Show all your work on the page where the question appears. Clearly mark your answer on the cover page on this exam.

3. For the function $f(x) = 7x^3 + 8x^2 + 9x + 5$, find the equation of the tangent line to the graph of f Point-slope form of line is at x=2.

Possibilities:

(a)
$$y = 111x - 97$$

(b)
$$y = 125x + 111$$

(c)
$$y = 111$$

(d)
$$y = x^3 + 17$$

(e)
$$y = 125x - 139$$

 $f(a) = 7(a)^3 + 8(a)^2 + 9(a) + 5$ = 56+32+18+5=111

$$f'(a) = \lambda 1(a)^2 + 16(a) + 9$$

= $84 + 3a + 9 = 185$

4. Find the derivative, f'(x), if $f(x) = \sqrt[5]{6x^3 + 8x^2 + 9x + 7}$.

Possibilities:

(a)
$$(1/5)(6x^3 + 8x^2 + 9x + 7)^{-1/5}$$

(b)
$$(1/5)(18x^2 + 16x + 9)^{-4/5}$$

(c)
$$(1/5)(6x^3 + 8x^2 + 9x + 7)(18x^2 + 16x + 9)$$

Possibilities: =
$$(6x^3 + 8x^2 + 9x + 7)^{-1/5}$$
 By the chain of

(d)
$$(1/5)(6x^3 + 8x^2 + 9x + 7)^{-4/5}(18x^2 + 16x + 9)$$

(e)
$$\sqrt[5]{18x^2 + 16x + 9}$$

5. Find the derivative, f'(x), if $f(x) = 8e^{18x} + 17x^e$.

Possibilities:

(a)
$$8e^{18x} + 17x^e$$

(b)
$$\frac{8}{18}\ln(18x) + 17ex^{e-1}$$

(c)
$$144e^{18x} + 17ex^{e-1}$$

(d)
$$8\ln(18x) + 17ex^{e-1}$$

(e)
$$144xe^{18x-1} + 17ex^{e-1}$$

(a)
$$8e^{18x} + 17x^{e}$$

(b) $\frac{8}{18}\ln(18x) + 17ex^{e-1}$
(c) $144e^{18x} + 17ex^{e-1}$
(d) $8\ln(18x) + 17ex^{e-1}$
(e) $144e^{18x} + 17ex^{e-1}$
(f) $144e^{18x} + 17ex^{e-1}$
(g) $144e^{18x} + 17ex^{e-1}$
(e) $144e^{18x} + 17ex^{e-1}$
(f) $144e^{18x} + 17ex^{e-1}$

6. Suppose $F(x) = e^x g(19x + 18)$. Find F'(0), given that g(0) = 9, g'(0) = 20, g(18) = 17, g'(18) = 16. Need to use product and chain rules

Possibilities:
(a) 16
(b) 321
$$F(x) = (e^x)^1 g(19x+18) + e^x(g(19x+18))$$

$$= e^{x}g(19x+18) + e^{x}g(19x+18)(19)$$

(e) 389
$$\implies$$
 $F(0) = e^{\circ}g(19(0)+18) + e^{\circ}g(19(0)+18) \cdot 19$
= $g(18) + 19g(18) = /7 + 19(16) = 321$

Need to use quotient 7. Suppose g(7) = 6 and g'(7) = 8. Find F'(7) if

$$F(x) = \frac{x^2}{g(x)}$$

Possibilities:

$$F'(x) = (x^2)'g(x) - x^2g'(x)$$

calcula

(a)
$$-\frac{77}{9}$$

$$| (d) - \frac{154}{3} | (e) \frac{4}{3} | \Rightarrow F(7) = \frac{2(7)g(7) - 7^{3}g'(7)}{(g(7))^{2}} = \frac{14 \cdot 6 - 49 \cdot 8}{36} = \frac{77}{9}$$

8. Suppose $H(x) = \sqrt{f(x) + g(x)}$. If f(9) = 7, f'(9) = 8, g(9) = 42, and g'(9) = 6, find H'(9).

Possibilities:

(b) 1

(d)
$$\sqrt{14}$$

(c) $\frac{1}{28}\sqrt{14}$

$$(d) \sqrt{14} \implies H(q) = \frac{1}{2} \left(f(q) + g(q) \right)^{2} \cdot \left(f(q) + g'(q) \right)$$

$$= \frac{1}{2} \left(7 + 42 \right)^{2} \cdot \left(8 + 6 \right) = \frac{1}{2\sqrt{49}} \cdot 14 = \frac{14}{14} = 1$$

9. Suppose
$$F(x) = \ln(g(x))$$
, If $g(2) = 11$, $g'(2) = 19$, and $g''(2) = 7$, then find $F'(2)$.

Possibilities:

(a) $11/\ln(19)$
(b) $\ln(11)/19$
(c) $\ln(7)$
(d) $19/11$
(e) $11/19$

F(a) = $\frac{3}{3}$
(a) = $\frac{1}{3}$
(b) $\frac{1}{3}$

- - (e) 11/19
- 10. For the function $f(x) = \begin{cases} x^2 9 & x < 3 \\ x^3 4 & 3 \le x < 7, \text{ find the slope of the tangent line to the graph of } f \text{ at } x^{-2} & 7 \le x \end{cases}$

Possibilities:

$$(x_{-3})_{-} - 9x_{-3}$$

- (a) 216 (b) $-\frac{2}{3375}$ \implies $f'(15) = -\lambda(15)^3 = -\frac{\lambda}{15^3} = -\frac{\lambda}{3375}$
- (c) 675
- (d) $\frac{1}{225}$
- (e) 30
- 11. Find the derivative, f'(x), if $f(x) = \ln(\ln(7+9x))$. Need to use the chain rule twice Possibilities:

- (a) $\frac{1}{\ln(\ln(7+9x))} \cdot \frac{1}{\ln(7+9x)} \cdot \frac{9}{7+9x}$
- (b) $\frac{1}{9}$ 7 + 9x
- (c) $\left(\frac{9}{7+9x}\right)e^{\ln(7+9x)}$
- (e) $\frac{1}{\ln{(7+9x)}} \cdot \frac{9}{7+9x}$

 $f'(x) = \frac{1}{\ln(7+9x)} - \frac{1}{7+9x} - 9$ $=\frac{1}{\ln(749x)}\cdot\frac{9}{7+9x}$

12. If $f(x) = x^7 + 2x^6 + 9x$ then find the third derivative f'''(x):

Possibilities:

(a)
$$210x^4 + 240x^3$$

(b)
$$210x^4 + 240x^3 + 12x$$

(c)
$$\frac{7x^6 + 12x^5 + 9}{x^2}$$

(d)
$$343x^7 + 432x^6$$

(e)
$$42x^5 + 60x^4$$

$$f''(x) = 42x^5 + 60x^4$$

$$f'''(x) = a10x^{4} + 240x^{3}$$

13. If
$$f(x) = (17x + 38)^{27}$$
 then $f''(x) =$

Possibilities:

(a)
$$27^2 (17)^{27} (17x + 38)$$

(b)
$$27(26)17^{25}$$

(c)
$$27(26) (17x + 38)^{25} (17)^2$$

(e)
$$27(17x+38)^{26}$$

Need to use chain rule each time you take a derivative

$$f'(x) = 27(17x + 38)^{26}(17)$$

$$f'(x) = 37(36)(17x + 38)^{5}(17)(17)$$

14. Find the derivative,
$$f'(x)$$
, of $f(x) = \frac{1}{x^{60}}$ = χ^{-60}

Possibilities:

(a)
$$-60x^{-61}$$

(b)
$$-60x^{-59}$$

(c)
$$60x^{59}$$

(d)
$$1/(60 x^{59})$$

(e)
$$1/(60 x^{61})$$

$$= f'(x) = -60x^{-61}$$

15. If \$7000 dollars is invested at 6% annual interest compounded continuously, what is the value of the investment at the end of 3 years?

Possibilities:

$$P(t) = P_o e^{rt}$$

- (a) \$5846.89
- (b) \$8260.00
- (c) \$8380.52
- (d) \$12600.00
- (e) \$42347.53
- P(3)= 7000 e (.06)(3)
 - ≈ 8380.5a

16. A bacteria culture starts with 8000 bacteria and triples after 13 hours. If we express the number of bacteria after t hours as $y(t) = a \cdot e^{kt}$, find the value of k.

Possibilities:

- (a) $8000 / \ln (3)$
- (b) $\ln(3) / \ln(13)$

(d) $\ln(3)/13$

(c) 8000

(e) $13/\ln(3)$

$$\rightarrow \ln(3)=\ln(e^{Bk})$$

 $\Rightarrow ln(3) = 13k$

$$\Rightarrow \frac{\ln(3)}{13} = K$$

17. A drug is injected into the bloodstream of a patient. The concentration of the drug in the bloodstream (in milligrams per cubic centimeter) t hours after the injection is given by

$$C(t) = \frac{.21t}{t^2 + 7}$$

Find the instantaneous rate of change of the drug concentration with respect to time at t = 1 hour.

Possibilities:

- (a) 0.020 units per hour
 - (b) 0.026 units per hour
 - (c) 0.105 units per hour
 - (d) 6.000 units per hour
 - (e) 33.333 units per hour

Find
$$C'(t)$$
 and plug in $t=1$
 $C'(t) = (-21t)'(t^2+7) - .21t(t^2+7)'$
 $(t^2+7)^2$

$$= \frac{21(t^3+7)}{(t^3+7)^3}$$

$$= \frac{21(t^3+7)}{(t^3+7)^3}$$

$$\frac{1}{2} C'(1) = \frac{21(1^2+7) - .21(1)(a(1))}{(1^2+7)^2} = \frac{.21(8) - .21(a)}{64}$$

18. The price-demand function for the production of x microwaves is given as

$$p = 230 - \frac{x}{60}.$$

Evaluate the **marginal revenue** function at x = 1000.

Possibilities:

(a)
$$\$ - 16.67$$

- (c) \$213333.33
- (d) \$213.33

(e)
$$\$ - 1770.00$$

$$R(x) = p \cdot x = (230 - \frac{x}{60}) \cdot x$$

$$= 330 \times -\frac{3}{60}$$

$$\Rightarrow R(x) = 230 - \frac{x}{30}$$

$$\Rightarrow R'(1000) = 330 - \frac{1000}{30} \approx 196.67$$

19. The graph of y = f(x) is shown below. What is the minimum value of f(x) on the interval [-3, 4]?

Possibilities:

smallest y value on the interval

- (a) 4
- (b) 3

- (e) 1

(d) -2

20. Find the minimum value of $g(x) = x^3 + 9x^2 + 170$ on the interval [-1, 5].

Possibilities: 1 Set g (x)=0 and solve for x

- (a) 164
- (b) 278
- $9'(x) = 3x^2 + 18x = 0$
- (c) 178
- (d) 520

 $3 \times (\times +6) = 0$

Plug x=0

And endpoints into g(x)

X=-6

Not in [-1,5] a Plug X=0

$$g(-1) = (-1)^3 + 9(-1)^2 + 170 = 17-8$$

$$g(0) = 0^3 + 9(0)^2 + 170 = 170$$
 min

$$g(5) = 5^3 + 9(5)^2 + 170 = 125 + 225 + 170$$

= 520

MA123 — Elem. Calculus Exam 2	Spring 2019 2019-3-7	Name:	Sec.:
You may use an ACT-approved	calculator during	the exam, but NO cal	No books or notes may be used. culator with a Computer Algebra ell phone use during the exam is
answer questions on the back of this page. For each multiple cho	f this page, and rice question, you	ecord your answers to will need to fill in the	hoice questions. Answer the short the multiple choice questions on circle corresponding to the correct been chosen. For example, if (a)
	a b	(c) (d) (e)	
You have two hours to do this e	xam. Please write	your name and section	on number on this page.
	GOO	D LUCK!	
3. (a) (b)	(c) (d) (e)	12. (a) (b)	(c) (d) (e)
4. (a) (b)	(c) (d) (e)	13. (a) (b)	c d e

For grading use:

20. (a)

(b)

 (\mathbf{c})

Multiple Choice	Short Answer		
(number right) (5 points each)	(out of 10 points)		

 (\mathbf{b})

 (\mathbf{a})

 (\mathbf{d})

 (\mathbf{c})

11.

 (\mathbf{d})