

MA 137 — Calculus 1 with Life Science Applications Antiderivatives (Section 5.8)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

November 23, 2015

From Differential to Integral Calculus

Roughly speaking, Calculus has two parts:

differential calculus and integral calculus

At the core of **differential calculus** (which we have been studying so far) is the concept of the instantaneous rate of change of a function. We have seen how this concept can be used to locally approximate functions, to identify maxima and minima, to decide stability of equilibria, etc.

Integral calculus, on the other hand, deals with accumulated change, and, thereby, recovering a function from a mathematical description of its instantaneous rate of change. This recovery process, interestingly enough, is related to the concept of finding the area enclosed by a curve. This will be studied in Chapter 6 (and in the follow up course, MA 138).

Antiderivatives

Many mathematical operations have an inverse. For example, to undo addition we use subtraction. To undo undo exponentiation we take logarithms. The process of differentiation can be undone by a process called *antidifferentiation*.

To motivate antidifferentiation, suppose we know the rate at which a bacteria population is growing and want to know the size of the population at some future time. The problem is to find a function F whose derivative is a known function f.

Definition

A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all $x \in I$.

Warning: Although we will learn rules that allow us to compute antiderivatives, this process is typically **much more** difficult than finding derivatives; in addition, there are even cases where it is impossible to find an expression for an antiderivative.

Corollaries of MVT

Two corollaries of the Mean Value Theorem will help us in finding antiderivatives. The first one is Corollary 2 from Section 5.1 (p. 212 of Neuhauser's textbook):

Corollary 2

If f is continuous on [a, b] and differentiable on (a, b), with f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].

Corollary 2 is the converse of the fact that f'(x) = 0 whenever f(x) is a constant function. Corollary 2 tells us that all antiderivatives of a function that is identically 0 are constant functions.

Corollary 3 says that functions with identical derivative differ only by a constant; that is, to find all antiderivatives of a given function, we need only find one.

Corollary 3

If F(x) and G(x) are antiderivatives of the continuous function f(x) on an interval I, then there exists a constant c such that G(x) = F(x) + c for all $x \in I$.

Proof: Since F(x) and G(x) are both antiderivatives of f(x), it follows that F'(x) = f(x) = G'(x) for all $x \in I$. Thus

$$[F(x) - G(x)]' = F'(x) - G'(x) = f(x) - f(x) = 0.$$

It follows from Corollary 2, applied to the function F-G, that F(x)-G(x)=c, where c is a constant.

The Indefinite Integral

Notation

The <u>indefinite integral</u> of f(x), denoted by

$$\int f(x)\,dx$$

represents the *general* antiderivative of f(x).

For example, $\int 3x^2 dx = x^3 + c$, where c is any constant.

Rules for Indefinite Integrals

A.
$$\int k f(x) dx = k \int f(x) dx$$
 k any constant
B. $\int [f(x) \pm g(x)] dx = \left[\int f(x) dx \right] \pm \left[\int g(x) dx \right]$

Basic Indefinite Integrals

The formulas below can be verified by differentiating the righthand side of each expression. The quantities a and c below denote (nonzero) constants.

1.
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + c$$
 $n \neq -1$

$$2. \qquad \int \frac{1}{x} \, dx = \ln|x| + c$$

$$3. \qquad \int e^{ax} \ dx = \frac{1}{a} e^{ax} + c$$

$$4. \qquad \int \sin(ax) \, dx = -\frac{1}{a} \cos(ax) + c$$

$$\int \cos(ax) \, dx = \frac{1}{a} \sin(ax) + c$$

Warning: We do not have simple derivative rules for products and quotients, so we should not expect simple integral rules for products and quotients.

Example 1: (Online Homework HW22, # 2)

Find the antiderivative F of $f(x) = 5x^4 - 2x^5$ that satisfies F(0) = -10.

Example 2:

 $\label{the:equal_equal} Evaluate\ the\ indefinite\ integral$

$$\int (t^3 + 3t^2 + 4t + 9) dt.$$

Example 3: (Online Homework HW22, # 5)

Evaluate the indefinite integral
$$\int x(10-x^4) dx$$
.

$$\int x(10-x^4)\,dx$$

Example 4: (Online Homework HW22, # 7)

Evaluate the indefinite integral $\int \frac{9u^4 + 7\sqrt{u}}{u^2} du.$

$$\int \frac{9u^4 + 7\sqrt{u}}{u^2} \, du$$

Example 4: (Online Homework HW22, # 10)

Find a function f such that $f'(x) = 4x^3$ and the line x + y = 0 is tangent to the graph of f.

Example 5: (Online Homework HW22, # 13)

Find f if $f'''(x) = \sin(x)$, f(0) = 8, f'(0) = 4, and f''(0) = -10.

Solving Simple Differential Equations

In this course, we have repeatedly encountered differential equations (\equiv DEs). Occasionally, we showed that a certain function would solve a given differential equation.

What we learned so far translates into solving DEs of the form

$$\frac{dy}{dx} = f(x).$$

That is, the rate of change of y with respect to x depends only on x. We now know that if we can find one such function y such that y' = f(x), then there is a whole family of functions with this property, all related by vertical translations.

If we want to pick out one of these functions, we need to specify an initial condition — a point (x_0, y_0) on the graph of the function. Such a function is called a solution of the **initial-value problem**

$$\frac{dy}{dx} = f(x)$$
 with $y = y_0$ when $x = x_0$.

Example 6: (Neuhauser, Example 5, p. 270)

Solve the initial-value problem when
$$x_0 = 3$$
.

$$\frac{dy}{dx} = -2x^2 + 3 \quad \text{with } y_0 = 10$$

Example 7:

What about finding the solution of the initial-value problem $\frac{dy}{dx} = ry$ with $y(0) = y_0$ and r a constant? How can we do it?