MA137 – Calculus 1 with Life Science Applications **Exponential and Logarithmic Functions** (Sections 1.1 and 1.2)

Alberto Corso (alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

August 30, 2017

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function

Exponential Functions

The exponential function

 $f(x) = a^x$ $(a > 0, a \neq 1)$ has domain \mathbb{R} and range $(0, \infty)$. The graph of f(x) has one of these shapes: $y \uparrow$

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function

Laws of Exponents

Let a and b be real numbers so that a, b > 0 and $a, b \neq 1$.

• $a^0 = 1$

•
$$a^u a^v = a^{u+v}$$

•
$$\frac{a^u}{a^v} = a^{u-v}$$
 In particular, $\frac{1}{a^v} = \frac{a^0}{a^v} = a^{0-v} = a^{-v}$

• $(a^u)^v = a^{uv}$ In particular, $a^{1/n} = \sqrt[n]{a}$

•
$$(ab)^u = a^u b^u$$
 $\left(\frac{a}{b}\right)^u = \frac{a^u}{b^u}$

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function

Example 1:

Use the graph of $f(x) = 3^x$ to sketch the graph of each function:

 $g(x)=-3^x$

$$h(x) = 1 - 3^{-x}$$

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function

The Number 'e' (Euler's constant)

The most important base is the number denoted by the letter *e*.
The number *e* is defined as the value that
$$\left(1+\frac{1}{n}\right)^n$$
 approaches as *n* becomes very large.

Correct to five decimal places (note that e is an irrational number), $e \approx 2.71828$.

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function

The Natural Exponential Function

The Natural Exponential Function

The **natural exponential function** is the exponential function

$$f(x) = e^x$$

with base *e*. It is often referred to as <u>the</u> exponential function.

Note:

Sometimes we write

$$f(x) = \exp(x)$$

to denote the exponential function.

Since 2 < e < 3, the graph of $y = e^x$ lies between the graphs of $y = 2^x$ and $y = 3^x$.

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function

Example 2:

When a certain drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after t hours is modeled by

$$D(t) = 50 e^{-0.2t}.$$

How many milligrams of the drug remain in the patient's bloodstream after 3 hours?

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Logarithmic Functions

Every exponential function $f(x) = a^x$, with $0 < a \neq 1$, is a one-to-one function (Horizontal Line Test). Thus, it has an inverse function, called the *logarithmic function with base a* and denoted by $\log_a x$.

Definition

Let *a* be a positive number with $a \neq 1$. The **logarithmic function** with base *a*, denoted by \log_a , is defined by

$$y = \log_a x \iff a^y = x.$$

That is, $\log_a x$ is the exponent to which a must be raised to give x.

Properties of Logarithms

- **1.** $\log_a 1 = 0$ **3.** $\log_a a^x = x$
- **2.** $\log_a a = 1$ **4.** $a^{\log_a x} = x$

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Graphs of Logarithmic Functions

The graph of $f^{-1}(x) = \log_2 x$ is obtained by reflecting the graph of $f(x) = a^x$ in the line y = x. Thus, the function $y = \log_a x$ is defined for x > 0 and has range equal to \mathbb{R} . x The point (1,0) is on the graph of $y = \log_a x$ (as $\log_a 1 = 0$) and the y-axis is a vertical asymptote.

Definition Graphs of Logarithmic Functions Base Change

Natural Logarithms

Of all possible bases a for logarithms, it turns out that the most convenient choice for the purposes of Calculus is the number *e*.

Definition

The logarithm with base e is called the **natural logarithm** and denoted.

$$\ln x := \log_e x.$$

We recall again that, by the definition of inverse functions, we have

$$y = \ln x \quad \iff \quad e^y = x.$$

Properties of Natural Logarithms

1. $\ln 1 = 0$ 3. $\ln e^{x} = x$ **4**. $e^{\ln x} = x$ **2.** $\ln e = 1$

Definition Graphs of Logarithmic Functions Base Change

Common Logarithms

Another convenient choice of base for the purposes of the Life Sciences is the number 10.

Definition

The logarithm with base 10 is called the **common logarithm** and denoted:

$$\log x := \log_{10} x.$$

We recall again that, by the definition of inverse functions, we have

$$y = \log x \quad \iff \quad 10^y = x.$$

Properties of Natural Logarithms

1. $\log 1 = 0$ 3. $\log 10^{x} = x$ 2. $\log 10 = 1$

4.
$$10^{\log x} = x$$

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Laws of Logarithms

Since logarithms are 'exponents', the Laws of Exponents give rise to the Laws of Logarithms:

Laws of Logarithms

Let a be a positive number, with $a \neq 1$. Let A, B and C be any real numbers with A > 0 and B > 0.

1.
$$\log_a(AB) = \log_a A + \log_a B;$$

2. $\log_a\left(\frac{A}{B}\right) = \log_a A - \log_a B;$

$$3. \quad \log_a(A^C) = C \, \log_a A.$$

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Proof of Law 1.: $\log_a(AB) = \log_a A + \log_a B$

Let us set

$$\log_a A = u$$
 and $\log_a B = v$.

When written in exponential form, they become

$$a^{u} = A \text{ and } a^{v} = B.$$
Thus: $\underline{\log_{a}(AB)} = \underline{\log_{a}(a^{u} a^{v})} = \underline{\log_{a}(a^{u+v})}$

$$\stackrel{\text{why?}}{=} u + v$$

$$= \underline{\log_{a}A + \log_{a}B}.$$
In a similar fashion, one can prove 2 and 3

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Expanding and Combining Logarithmic Expressions

Example 3:

Use the Laws of Logarithms to combine the expression $\log_a b + c \log_a d - r \log_a s - \log_a t$ into a single logarithm

into a single logarithm.

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Change of Base

For some purposes, we find it useful to change from logarithms in one base to logarithms in another base. One can prove that:

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

Proof: Set $y = \log_b x$. By definition, this means that $b^y = x$. Apply now $\log_a(\cdot)$ to $b^y = x$. We obtain

$$\log_a(b^{\gamma}) = \log_a x \qquad \rightsquigarrow \qquad y \log_a b = \log_a x.$$

Thus

$$\log_b x = y = \frac{\log_a x}{\log_a b}$$

Example:
$$\log_5 2 = \frac{\log 2}{\log 5} = \frac{\ln 2}{\ln 5} \approx 0.43068.$$

Exponential Equations

An exponential equation is one in which the variable occurs in the exponent. For example,

$$3^{x+2} = 7.$$

We take the (either common or natural) logarithm of each side and then use the Laws of Logarithms to 'bring down the variable' from the exponent:

Example 4: (Online Homework HW03, # 6)

Solve the given equation for x:

$$2^{5x-4} = 3^{10x-10}$$

Logarithmic Equations

A logarithmic equation is one in which a logarithm of the variable occurs. For example,

$$\operatorname{og}_2(25-x)=3.$$

To solve for x, we write the equation in exponential form, and then solve for the variable:

$$25-x=2^3 \quad \rightsquigarrow \quad 25-x=8 \quad \rightsquigarrow \quad x=17.$$

Alternatively, we raise the base, 2, to each side of the equation; we then use the Laws of Logarithms:

$$2^{\log_2(25-x)} = 2^3 \quad \rightsquigarrow \quad 25-x = 2^3 \quad \rightsquigarrow \quad x = 17.$$

Example 5: (Online Homework HW03, # 5)

Solve the given equation for x:

$$\log_{10} x + \log_{10}(x+21) = 2$$