L'Hôpital's Rule Theory Examples	L'Hôpital's Rule Examples
	Heuristics
MA 137 — Calculus 1 with Life Science Applications L'Hôpital's Rule (Section 5.5) Alberto Corso (alberto.corso@uky.edu) Department of Mathematics University of Kentucky	We have often encountered the situation in which we had to compute $\lim_{\substack{x \to a \\ x \to z}} \frac{f(x)}{g(x)}$ and we had that both the following limits were zero $\lim_{\substack{x \to a \\ x \to z}} g(x) = 0$ and $\lim_{\substack{x \to a \\ x \to z}} g(x) = 0.$ Using a linear approximation at $x = a$, we find that, for x close to a $\frac{f(x)}{g(x)} \approx \frac{f(a) + f'(a)(x - a)}{g(a) + g'(a)(x - a)}$ Since $f(a) = g(a) = 0$ and $x \neq a$, the right-hand side is equal to $\frac{f'(a)(x - a)}{g'(a)(x - a)} = \frac{f'(a)}{g'(a)}$ provided that $f'(a)/g'(a)$ is defined. We therefore hope that something like
November 15, 2017	$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$ holds when $f(a)/g(a)$ is of the form 0/0 and $f'(a)/g'(a)$ is defined. In fact, something like this does hold; it is called 'Hôpital's rule . 2020
http://www.ms.uky.edu/~ma137 Lecture 36	http://www.ms.uky.edu/~ma137 Lecture 36
L'Hôpital's Rule Examples	L'Hôpital's Rule Theory Examples
L'Hôpital's Rule	Reduction to 0/0 or ∞/∞ Form
Theorem Suppose that f and g are differentiable functions and that $\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x) \text{or} \lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x)$ Then	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ provided the second limit exists.	$ \begin{aligned} & \infty - \infty \text{Suppose we have to compare } \lim_{k \to \infty} f(x) - g(x) \ \text{ where } \lim_{k \to \infty} g(x) = \infty \text{To apply} \\ & \text{IPROpital's rule to this kinds of limits with it in our of the two forms \\ & \lim_{k \to \infty} f(x) - g(x) \ = \lim_{k \to \infty} g(x) \left(1 - \frac{g(x)}{(x)}\right) = \lim_{k \to \infty} g(x) \left(\frac{f(x)}{g(x)} - 1\right) \\ & \text{ and hope that the limit is of th form 0 - } \infty. \end{aligned} $
L'Hôpital's rule can actually be applied to calculate limits for seven kinds of indeterminate expressions $\frac{0}{0} \frac{\infty}{\infty} 0 \cdot \infty \infty - \infty 0^0 1^\infty \infty^0.$	$0^0 \ 1^{\infty} \infty^0$ Suppose we have to compute $\lim_{i \to 1} f(t_i) f^{(1)}$, which becomes of the form $0^0, 1^{\infty} \text{ or } \infty^0$. The key to solving these limits is to write them as exponentials $\lim_{i \to 1} f(x_i) f^{(1)} = \lim_{i \to 1} \sup_{\alpha \in I} \left\{ \ln \left[f(x_i) f^{(1)} \right] - \lim_{\alpha \to \infty} \sup_{\alpha \in I} \left\{ g(x_i) : \ln f(x_i) \right\} - \exp \left[\lim_{\alpha \to \infty} g(x_i) : \ln f(x_i) \right].$
0 ∞ (Note that l'Hôpitals rule works for $a = +\infty$ or $-\infty$ as well.)	The last step, in which we interchanged lim and exp. uses the fact that the exponential function is continuous. 4/12 http://www.methyschrid.mp.17kscture.30

http://www.ms.uky.edu/~ma137 Lecture 36

http://www.ms.uky.edu/"ma137 Lecture 36

L'Hôpital's Rule	Theory Examples	L'Hôpital's Rule Examples
Example 1: (Nuehauser, p.	247)	Example 2: (Nuehauser, p. 247)
Evaluate $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}.$		Evaluate $\lim_{x \to 0} \frac{e^x - 1}{x}$.
http://www.ms.uky.edu/~ma137	5/12 Lecture 36	6/12 http://www.ms.uky.edu/*ma137 Lecture 36
L'Hôpital's Rule	Theory Examples	L'Hôpital's Rule Fxamples
Example 3:	Theory Examples	Example 4: (Neuhauser, Problem # 25, p. 252)
	Σταγίτε	

L'Hôpital's Rule Examples	L'Hôpital's Rule Examples
Example 5: (Online Homework HW20, # 3)	Example 6: (Neuhauser, Example # 10, p. 250)
Evaluate $\lim_{x\to 0^+} 7\sqrt{x} \cdot \ln x.$	Evaluate $\lim_{x \to \infty} x - \sqrt{x^2 + x}$.
9/1 http://www.ms.uky.edu/~ma137 Lecture 36	10/12 http://www.ms.uky.edu/*ma137 Lecture 36
L'Hópital's Rule Theory Examples	L'Hôpital's Rule Theory Examples
Example 7: (Online Homework HW20, # 4)	Example 8: (Neuhauser, Problem # 62, p. 253)
Evaluate $\lim_{x \to 0^+} x^x$.	Use l'Hôpital's rule to find $\lim_{x\to\infty} \left(1+\frac{c}{x}\right)^x$ where <i>c</i> is a constant. What about $\lim_{x\to\infty} 3x(\ln(x+3) - \ln x)$? (Online Homework HW20, #
11/1	12/12
http://www.ms.uky.edu/~ma137 Lecture 36	http://www.ms.uky.edu/~ma137 Lecture 36