FastTrack — MA 137 — BioCalculus Functions (1): Definitions and Basic Functions

Alberto Corso - (alberto.corso@uky.edu)

Department of Mathematics - University of Kentucky

Goal: Perhaps the most useful mathematical idea for modeling the real world is the concept of a function. We explore the idea of a function and then give its mathematical definition.

Functions Around Us/Ways to Represent a Function

In nearly every physical phenomenon we observe that one quantity depends on another. For instance

- height is a function of age;
- temperature is a function of date;
- · cost of mailing a package is a function of weight;
- . the area of a circle is a function of its radius;
- . the number of bacteria in a culture is a function of time;
- . the price of a commodity is a function of the demand.

We can describe a specific function in the following four ways:

- verbally (by a description in words);
- algebraically (by an explicit formula);
- visually (by a graph);
- numerically (by a table of values).

$$f: A \longrightarrow B, \quad x \mapsto f(x)$$

where A and B are subsets of the set of real numbers \mathbb{R} .

Basic Functions The Domain of a Function The Vertical Line Test	Basic Functions The Domain of a Function The Vertical Line Test
Evaluating a Function:	Example 1:
The symbol that represents an arbitrary number in the domain of a function f is called an independent variable . The symbol that represents a number in the range of f is called a	Evaluate the piecewise function $f(x) = \begin{cases} x^2 + 2x & \text{if } x \le -1 \\ x & \text{if } x > -1 \end{cases}$ at the indicated values:
dependent variable.	f(-4) =
In the definition of a function the independent variable plays the role of a "placeholder".	f(-1) =
For example, the function $f(x) = 2x^2 - 3x + 1$ can be thought of as $f(\Box) = 2 \cdot \Box^2 - 3 \cdot \Box + 1.$	f(0) =
To evaluate f at a number (expression), we substitute the number (expression) for the placeholder.	f(1) =
5/28	6/2
http://www.ms.uky.edu/"ma137 Lecture #1 - Sunday	http://www.ms.uky.edu/"ma137 Lecture #1 - Sunday
Definition of Function Functions Evaluating a Function Basic Function The Donain of a Function The Vertical Line Test	Functions Definition of Function Basic Functions The Domain of a Function The Vertical Line Test
Example 2:	The Domain of a Function
If $f(x) = 3 - 5x + 4x^2$ find:	The domain of a function is the set of all inputs for the function.
f(a) =	The domain may be stated explicitly.
	For example, if we write
f(a+h) =	$f(x) = 1 - x^2 \qquad -2 \le x \le 5$
	then the domain is the set of all real numbers x for which $-2 \le x \le 5$.
$\frac{f(a+h)-f(a)}{h} =$	If the function is given by an algebraic expression and the domain is not stated explicitly, then by convention the domain is the set of <u>all</u> real numbers for which the expression is defined.
	Fact: Two functions f and g are equal if and only if
	1. <i>r</i> and <i>g</i> are defined on the same domain, 2. $f(x) = g(x)$ for all x in the domain.
7/28	8/2
http://www.ms.uky.edu/~ma137 Lecture #1 - Sunday	http://www.ms.uky.edu/"ma137 Lecture #1 - Sunday

Functions Educe Functions Equations that Define Functions	Functions Back Functions Back Functions Back Functions Back Functions
Not every equation in two variables (say x and y) defines one of the variables as a function of the other (say y as a function of x). Example 9: Which of the equations that follow define y as a function of x? $x^2 + 2y = 4$ $x = y^2$ $x^2 + y^2 = 9$	We introduce the basic functions that we will consider throughout the remainder of the week/semester. • polynomial functions A polynomial function is a function of the form $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ where <i>n</i> is a nonnegative integer and a_0, a_1, \dots, a_n are (real) constants with $a_n \neq 0$. The coefficient a_n is called the leading coefficient, and <i>n</i> is called the degree of the polynomial function. The largest possible domain of <i>f</i> is \mathbb{R} . Examples Suppose <i>a</i> , <i>b</i> , <i>c</i> , and <i>m</i> are constants. • Constant functions: $f(x) = c(graph is a traight line)$; • Quadratic functions: $f(x) = ax^2 + bx + c(graph is a parabola).$
17/28 http://www.ms.uky.edu/~ma137 Lecture #1 - Sunday	18/28 http://www.ms.uky.edu/"ma137 Lecture #1 - Sunday
Functions Union Form of the functions Datic Functions Parallel and Perpendicular Lines Examples Examples	Functions Values framework of Line Values forms of the fragmation of a Line Basic Functions Parallel and Perpendicular Lines Examples
• rational functions A rational function is the quotient of two polynomial functions $p(x)$ and $q(x)$: $f(x) = \frac{p(x)}{q(x)}$ for $q(x) \neq 0$.	 power functions A power function is of the form f(x) = x^r where r is a real number Example Power functions are frequently found in "scaling relations" between biological variables (e.g., organ sizes). Einding such reliablications is the objective of allowerty. For example, in a

by N, then the per capita growth rate r(N)is given by

 $r(N) = \frac{aN}{k+N}$ $N \ge 0$

http://www.ms.uky.edu/~ma137 Lecture #1 - Sunday

where a and k are positive constants.

Ň

a/2

0

are typically scattered about the fitted curve

 exponential and logarithmic functions trigonometric functions

given by the scaling relation.

http://www.ms.uky.edu/~ma137 Lecture #1 - Sunday

http://www.ms.uky.edu/"ma137 Lecture #1 - Sunday

Uney/Linear Functions Functions Various Forms of the Equation of a Line Back Functions Parallel and Porpendicular Lines Examples	Euncy Linesy Functions Functions Functions Parallet and Perpendicular Lines Examples Examples
Parallel and Perpendicular Lines	Example 7:
Parallel Lines Two lines are parallel if and only if they have the same slope.	• Find an equation of the line that has y-intercept 6 and is parallel to the line $2x + 3y + 4 = 0$.
Perpendicular Lines Two lines with slopes m_1 and m_2 are perpendicular if and only if $m_1m_2 = -1 \Leftrightarrow m_2 = -\frac{1}{m_1}.$	 ▶ Find an equation of the line through (-1, 2) and perpendicular to the line 4x - 8y = 1.
Note: Also, a horizontal line (slope 0) is perpendicular to a vertical line (no slope). 25/28 http://www.mis.iky.edu/ mol37 Locture #1-Sunday	26/7 http://www.mc.uky.cdu/*ma137 Lecture #1 - Sunday
Einer Function: Function: Variate Forms of the Equation of a Line Back Function: Parallel and Perpendicular Line Econgles	Liney/Linear Fourcison Functions Variance Forms of the Equation of a Line Basic Functions Parallel and Propendicular Lines Examples
Example 8 (Global Warming):	Example 9 (Problem #52, Section 1.1, p. 14):
Some scientists believe that the average surface temperature of the world has been rising steadily. Suppose that the average surface temperature is given by $T = 0.02t + 8.50$, where T is the temperature in °C and t is years since 1900. (a) What do the slope and T -intercept represent?	 The Celsius scale is devised so that 0°C is the freezing point of water (at 1 atmosphere of pressure) and 100°C is the boiling point of water (at 1 atmosphere of pressure). If you are more familiar with the Fahrenheit scale, then you know that water freezes at 32°F and boils at 212°F. (a) Find a linear equation/function that relates temperature measured in degrees Celsius and temperature measured in degrees Fahrenheit. (b) The normal body temperature in humans ranges from 97.6°F
(b) Use the equation to predict the average global surface temperature in 2100.	to 99.6°F. Convert this temperature range into degrees Celsius.