Exponential Functions Logarithmic Functions Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest

		Exponential I	unctions	
FastTrack — MA 137 — BioCalculus Functions (4): Exponential and Logarithmic Functions		The exponenti has domain R a these shapes:	f(x) = a	a^x $(a > 0, a \neq 1)$ The graph of $f(x)$ has one of
Alberto Corso - (alberto.corso@uky.edu) Department of Mathematics - University of Kentucky Goal: We introduce two new classes of functions called exponential and logarithmic functions. They are inverses of each other. Exponential functions are appropriate for modeling such natural processes as population growth for all living things and radioactive decay.		,	$\frac{1}{0}$	$f(x) = a^{x}$
http://www.ms.uky.edu/~ms137 Exponential Functions Logarithmic Functions	Lecture #4 – Wednesday Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest		Exponential Functions Logarithmic Functions	Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest
Example 1:		Example 2:		
Let $f(x) = 2^x$. Evaluate the follow	ving:	Draw the graph	of each function:	
f(2) =	f(-1/3) =	$f(x) = 2^x$		$g(x) = \left(\frac{1}{2}\right)^x$
$f(\pi) =$	$f(-\sqrt{3}) =$			
http://www.ms.uky.edu/~ma137	3/34 Lecture #4 - Wednesday	http:/	/www.ms.uky.edu/"ma137	4/3 Lecture #4 - Wednesday

Erponential Functions Logarithmic Functions Logarithmic Functions Compound Interest	Exponential Functions The number of Graph of Exponential Functions The number of Internet Compound Internet
Example 3:	The Number 'e'
Use the graph of $f(x)=3^{\times}$ to sketch the graph of each function: $g(x)=1+3^{\times}$ $h(x)=-3^{\times}$ $k(x)=2-3^{-x}$	The most important base is the number denoted by the letter e. The number e is defined as the value that $(1+1/n)^n$ approaches as <i>n</i> becomes very large. Correct to five decimal places (note that e is an irrational number), $e \approx 2.71828$. 1 2.00000 5 2.48832 10 2.59374 100 2.70481 1,000 2.71815 10,000 2.71827 1,000,000 2.71828
5/34. http://www.ms.uky.edu/*ms137 Lecture #4 - Wednesday	6/3 http://www.ms.uky.edu/*ma137 Lecture #4 - Wednesday
Exponential Functions Logarithmic Functions The number 'e' Logarithmic Functions Compound Interest	Exponential Functions Logarithmic Functions The number 'e' Compound Interest
The Natural Exponential Function	Example 4:
The Natural Exponential Function The natural exponential function is the exponential function $f(x) = e^x$ with base e. It is often referred to as <u>the</u> exponential function. Since $2 < e < 3$, the graph of $y = e^x$ lies between the graphs of $y = 2^x$ and $y = 3^x$. y $y = 3^x$ $y = -3^x$ $y = e^x$ $y = e^x$	When a certain drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after t hours is modeled by $D(t) = 50 e^{-0.2t}.$ How many milligrams of the drug remain in the patient's bloodstream after 3 hours?
http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday	http://www.ms.uky.edu/"ma137 Lecture #4 - Wednesday

Exponential Functions Logarithmic Functions Definition and Graph of Exponential Funct The number 'e' The Natural Exponential Function Compound Interest

Compound Interest

Compound interest is calculated by the formula:

$$P(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$$

where

P(t) = principal after t years

P₀ = initial principal

- r = interest rate per year
- n = number of times interest is compounded per year

t = number of years

Definition and Graph of Exponential Function: The number 'c' The Natural Exponential Function Compound Interest

Continuously Compounded Interest

Continuously compounded interest is calculated by the formula:

 $P(t) = P_0 e^{rt}$

where

P(t) =principal after t years $P_0 =$ initial principal t =number of years t =number of years

Proof: The interest paid increases as the number *n* of compounding periods increases. If $m = \frac{n}{2}$, then:

$$P\left(1+\frac{r}{n}\right)^{nt} = P\left[\left(1+\frac{r}{n}\right)^{n/r}\right]^{rt} = P\left[\left(1+\frac{1}{m}\right)^{m}\right]^{rt}.$$

But as *m* becomes large, the quantity $(1 + 1/m)^m$ approaches the number *e*. Thus, we obtain the formula for the continuously compounded interest.

http://www.ms.uky.edu/~ma137	Lecture #4 - Wednesday	http://www.ms.uky.edu/"ma137	Lecture #4 - Wednesday
Exponential Functions Logarithmic Functions	Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest	Exponential Functions Logarithmic Functions	Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest
Example 5:		Example 6:	
Suppose you invest \$2,000 at an annual rate of 12% ($r = 0.12$) compounded quarterly ($n = 4$). How much money would you have one year later? What if the investment was compounded monthly ($n = 12$)?		Suppose you invest \$2,000 at an compounded continuously. How r three years?	annual rate of 9% ($r=0.09$) nuch money would you have after

Exponential Functions Graphic of Supprintmic Functions Legarithmic Functions Base Changes	Exponential Fonctions Graph of the Cognitimic Functions Logarithmic Functions Base Charge
Logarithmic Functions	Example 7:
Every exponential function $f(x) = a^x$, with $0 < a \neq 1$, is a one-to-one function (Horizontal Line Test). Thus, it has an inverse function, called the <i>logarithmic function with base a</i> and denoted by $\log_a x$. Definition	Change each exponential expression into an equivalent expression in logarithmic form: ${\bf 5^3}=b$
Let <i>a</i> be a positive number with $a \neq 1$. The logarithmic function with base <i>a</i> , denoted by $\log_{a^{n}}$ is defined by $y = \log_{a} x \iff a^{y} = x$. In other words, $\log_{a} x$ is the exponent to which <i>a</i> must be raised to give <i>x</i> .	$a^{6} = 15$
Properties of Logarithms 1. $\log_a 1 = 0$ 3. $\log_a a^x = x$ 2. $\log_a a = 1$ 4. $a^{\log_a x} = x$	e ^{r+1} = 0.5
http://www.ms.uky.edu/*ma137 Lecture #4 - Wednesday	http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday
Exponential Functions Craphin of Supprishing Functions Legarithmic Functions Base Charge	Exponential Functions Gogden days Motorial Cognitions Logarithmic Functions Logarithmic Functions Logarithmic Support
Example 8:	Graphs of Logarithmic Functions
Change each logarithmic expression into an equivalent expression in exponential form: $\log_3 81 = 4 \label{eq:1}$	The graph of $f^{-1}(x) = \log_a x$ is obtained by reflecting the graph of $f(x) = a^x$ in the line $y = x$. Thus, the function $y = \log_a x$ is defined for $x > 0$ and has range equal to \mathbb{R} . $y = 2^x$ $y = x$
$\log_8 4 = \frac{2}{3}$	$y = \log_2 x$
$\log_e(x-3)=2$	
	The point (1,0) is on the graph of $y = \log_a x$ (as $\log_a 1 = 0$) and
15/34	the y-axis is a vertical asymptote. 16/34
http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday	http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday

Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change	Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change
Example 9:		Common Logarithms	
Find the domain of the function sketch its graph.	$f(x) = \log_3(x+2)$ and	The logarithm with base 10 is call is denoted by omitting the base: Example 10 (Bacteria A certain strain of bacteria divide started with 50 bacteria, then the colony to grow to N bacteria is g $t = 3 \frac{\log 2}{\log 2}$ Find the time required for the col	$\label{eq:constraint} \begin{array}{ c c c c c }\hline log x := log_{10} x. \\\hline \hline \textbf{Colony):} \\ \hline s every three hours. If a colony is time t (in hours) required for the iven by \\\hline s(N/50) \\\hline log 2. \\\hline \end{array}$
http://www.ms.uky.edu/~ma137	17/34 Lecture #4 - Wednesday	http://www.ms.uky.edu/"ma137	18/34 Lecture #4 - Wednesday
Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change	Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change
Natural Logarithms		Example 11:	
Of all possible bases a for logarithms, it turns out that the most convenient choice for the purposes of Calculus is the number e. Definition		Evaluate each of the following ex In e ⁹	pressions:
The logarithm with base e is called the natural logarithm and denoted: $[n \times := log_e \times.]$ We recall again that, by the definition of inverse functions, we have		$\ln \frac{1}{e^4}$	
$y = \ln x \iff e^y = x.$ Properties of Natural Logarithms		e ^{ln 2}	
1. $\ln 1 = 0$ 2. $\ln e = 1$	3. $\ln e^x = x$ 4. $e^{\ln x} = x$		20/34
http://www.ms.uky.edu/~ma137	Lecture #4 - Wednesday	http://www.ms.uky.edu/~ma137	Lecture #4 - Wednesday

Exponential Functions Logarithmic Functions	Definition Graphs of Legarithmic Functions Common and Natural Legarithms Laws of Legarithms Base Change	Exponential Logarithmic	Eunctions Common	of Logarithmic Functions n and Natural Logarithms Logarithms
Example 12:		Example 13:		
Graph the function $y = 2 + \ln(x - x)$	- 3).	Find the domain of the fu	nction $f(x)$ =	$= 2 + \ln(10 + 3x - x^2).$
	21/34			22/34
http://www.ms.uky.edu/~ma137	Lecture #4 - Wednesday	http://www.ms.uky.ed	/"ma137 Lecture	#4 - Wednesday
Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change	Exponential Logarithmic	Common	of Logarithmic Functions n and Natural Logarithms Logarithms
Laws of Logarithms		Proof of Law 1.: log _a	$(AB) = \log_a$	$_{a}A + \log_{a}B$
Since logarithms are 'exponents', the to the Laws of Logarithms: Laws of Logarithms Let <i>a</i> be a positive number, with <i>a</i> real numbers with <i>A</i> > 0 and <i>B</i> > 1 1. $\log_a(AB) = \log_a A + \log_a B$; 2. $\log_a \left(\frac{A}{B}\right) = \log_a A - \log_a B$; 3. $\log_a(A^C) = C \log_a A$.	\neq 1. Let <i>A</i> , <i>B</i> and <i>C</i> be any 0.	When written in exponen Thus: $\frac{\log_a(AB)}{=}$	$= A \text{ and } a^{v}$ $\log_{a}(a^{u} a^{v})$ $\log_{a}(a^{u+v})$ $u + v$ $\log_{a} A + \log_{a} A$	ecome = <i>B</i> . <u>3a B.</u>

23/34

24/34

Exponential Function Cognitive of Logarithmic Functions Logarithmic Functions Base Characteristics	Exponential Function Graphs Gapithnic Functions Logarithmic Functions Base Charge data
Example 14:	Expanding and Combining Logarithmic Expressions
Evaluate each expression: $\log_5 5^9 \qquad \log_3 7 + \log_3 2 \qquad \log_3 16 - 2\log_3 2$	Example 15: Use the Laws of Logarithms to expand each expression: $log_2(2x)$
$\ln\left(\ln e^{(e^{200})}\right)$ $\log_3 100 - \log_3 18 - \log_3 50$	$\log_5(x^2(4-5x))$
http://www.ms.uky.obu/mail? Locture #4-Woohanday	$\log\left(x\sqrt{\frac{y}{z}}\right)$ http://www.ms.uky.odu/"ms137 Letture_#4 = Wednesday
Exponential Functions Common and Natural Logarithms Logarithmic Functions Base Changes	Exponential Functions Copyle of Logarithmic Functions Common and Matmal Logarithmic Logarithmic Functions Logarithmic Functions Common and Matmal Logarithmic Base Change
Example 16:	Example 17:
Use the Laws of Logarithms to combine the expression $\log_{g} b + c \log_{g} d - r \log_{g} s$ into a single logarithm.	Use the Laws of Logarithms to combine the expression $\ln 5 + \ln(x+1) + \frac{1}{2}\ln(2-5x) - 3\ln(x-4) - \ln x$ into a single logarithm.
27/34 http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday	28/34 http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday

Exponential Functions Logarithmic Functions Graphs of Logarithmic Functions Common and Natural Logarithm Laws of Logarithms Base Change

Example 18 (Forgetting):

Ebbinghaus's Law of Forgetting states that if a task is learned at a performance level P_0 , then after a time interval t the performance level P satisfies

$$\log P = \log P_0 - c \log(t+1),$$

where c is a constant that depends on the type of task and t is measured in months.

- (a) Solve the equation for P.
- (b) Use Ebbinghaus's Law of Forgetting to estimate a student's score on a biology test two years after he got a score of 80 on a test covering the same material. Assume c = 0.3.

Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change

29/34	30/34
http://www.ms.uky.edu/~ma137 Lecture #4 - Wednesday	http://www.ms.uky.edu/"ma137 Lecture #4 - Wednesday
Exponential Functions Graphs of Gugettimic Functions Logarithmic Functions Base Charge Septement Base Charge S	Exponential Functions Graph of degrathenic Functions Legarithmic Functions Base Change S
Comment (cont.d)	Example 19 (Biodiversity):
$\boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$	 Some biologists model the number of species S in a fixed area A (such as an island) by the Species-Area relationship. Big S = log c + k log A, Where c and k are positive constants that depend on the type of species and habitat. a) Solve the equation for S. (b) Sep art (a) to show that if k = 3 then doubling the area increases the number of species eightfold.

Exponential Functions Graphs of Gaparthinic Functions Logarithmic Functions Base Change Base Change	Exponential Functions Graphs of Gapathinic Functions Logarithmic Functions Base Change Base Change
Change of Base	Example 20:
For some purposes, we find it useful to change from logarithms in one base to logarithms in another base. One can prove that: $\boxed{\log_b x = \frac{\log_3 x}{\log_3 b}}.$	Use the Change of Base Formula and common or natural logarithms to evaluate each logarithm, correct up to five decimal places: log ₅ 2
Proof: Set $y = \log_b x$. By definition, this means that $b^y = x$. Apply now $\log_a(\cdot)$ to $b^y = x$. We obtain $\log_a(b^y) = \log_a x \longrightarrow y \log_a b = \log_a x$.	log ₄ 125
Thus $\log_{a}(y') = \log_{a} x \qquad \sim \qquad y \log_{a} y = \log_{a} x.$ $\log_{b} x = y = \frac{\log_{a} x}{\log_{a} b}.$	$\log_{\sqrt{3}} 5$
33/34 http://www.ms.sky.edu/"ms137 Lecture #4 - Wiedweiday	34/34 http://www.ms.uky.edu/"ms137 Lecture #4 - Wednesday