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Section 3.4: Trigonometric Limits

The following two trigonometric limits are important for developing the
differential calculus for trigonometric functions:

Rule

lim
x→0

sin x
x

= 1 and lim
x→0

1− cos x
x

= 0.

Note that the angle x is measured in radians.
The proof of the first statement uses a nice geometric argument
and the sandwich theorem.
The second statement follows from the first.
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Trigonometric Functions

We will sometimes use the double angle formulas
1 cos(2α) = cos2(α)− sin2(α)

2 sin(2α) = 2 sinα cosα.

which are special cases of the following addition formulas
1 cos(α + β) = cosβ cosα− sinα sinβ.
2 sin(α + β) = sinα cosβ + cosα sinβ.

What about sin(α/2) and cos(α/2)?

cos(α/2) = ±
√

1 + cosα
2

and sin(α/2) = ±
√

1− cosα
2

(the sign (+ or -) depends on the quadrant in which α/2 lies.)
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Section 3.4: Trigonometric Limits

Example (Online Homework HW10, #7)
Evaluate

lim
θ→0

sin 4θ sin 8θ
θ2 .
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Section 3.4: Trigonometric Limits

Example (Online Homework HW10, #10)
Evaluate the limit:

lim
x→0

tan 5x
tan 6x
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Section 3.4: Trigonometric Limits

Example (Neuhauser, Example 3(c), p. 118)
Evaluate the limit:

lim
x→0

sec x − 1
x sec x
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Example (Online Homework HW10, #14)
A semicircle with diameter PQ sits on an isosceles triangle PQR to
form a region shaped like an ice cream cone, as shown in the figure. If
A(θ) is the area of the semicircle and B(θ) is the area of the triangle,

find lim
θ→0+

A(θ)

B(θ)
.

Figure: Ice cream cone.
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Section 4.1: Average Growth Rate

Population growth in populations with discrete breeding seasons
(as discussed in Chapter 2) can be described by the change in
population size from generation to generation.

By contrast, in populations that breed continuously, there is no
natural time scale such as generations. Instead, we will look at
how the population size changes over small time intervals.
We denote the population size at time t by N(t), where t is now
varying continuously over the interval [0,∞). We investigate how
the population size changes during the interval [t0, t0 + h], where
h > 0. The absolute change during this interval, denoted by ∆N,
is ∆N = N(t0 + h)− N(t0).
To obtain the relative change during this interval, we divide ∆N by
the length of the interval, denoted by ∆t , which is h. We find that

∆N
∆

=
N(t0 + h)− N(t0)

h
This ratio is called the average growth rate.
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Section 4.1: Instantaneous Growth Rate

The slope of the tangent line is called the instantaneous growth rate
(at t0) and is a convenient way to describe the growth of a continuously
breeding population.

To obtain this quantity, we need to take a limit; that is, we need to
shrink the length of the interval [t0, t0 + h] to 0 by letting h tend to 0.
We express this operation as

lim
∆t→0

∆N
∆

= lim
h→0

N(t0 + h)− N(t0)

h

In the expression above, we take a limit of a quantity in which a
continuously varying variable, namely, h, approaches some fixed
value, namely, 0.

We denote the limiting value of ∆N/∆t as ∆t → 0 by N ′(t0) (read “N
prime of t0") and call this quantity the derivative of N(t) at t0, provided
that this limit exists!
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Section 4.1: The Derivative of a Function

We formalize the previous discussion for any function f . The average
rate of change of the function y = f (x) between x = x0 and x = x1 is

change in y
change in x

=
f (x1)− f (x0)

x1 − x0

By setting h = x1− x0, i.e., x1 = x0 + h, the above expression becomes

∆f
∆x

=
f (x0 + h)− f (x0)

h

Those quantities represent the slope of the secant line that passes
through the points P(x0, f (x0)) and Q(x1, f (x1)) [or P(x0, f (x0)) and
Q(x0 + h, f (x0 + h)), respectively].
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Section 4.1: Formal Definition of the Derivative

The instantaneous rate of change is defined as the result of computing
the average rate of change over smaller and smaller intervals.

Definition
The derivative of a function f at x0, denoted by f ′(x0), is

f ′(x0) = lim
x1→x0

f (x1)− f (x0)

x1 − x0
= lim

h→0

f (x0 + h)− f (x0)

h

provided that the limit exists. In this case we say that the function f is
differentiable at x0.

Geometrically f ′(x0) represents the slope of the tangent line.
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Section 4.1: Formal Definition of the Derivative

Example (Online Homework HW11, #3)

Let f (x) be the function 12x2 − 2x + 11. Then the quotient f (1+h)−f (1)
h

can be simplified to ah + b for a = and b = .

Compute

lim
h→0

f (1 + h)− f (1)

h
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