MA 137: Calculus I for the Life Sciences

David Murrugarra

Department of Mathematics, University of Kentucky http://www.ms.uky.edu/~ma137/

Spring 2017

A D M A A A M M

Rule

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad and \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$

Rule

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad and \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$

• Note that the angle *x* is measured in radians.

Rule

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad and \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$

- Note that the angle *x* is measured in radians.
- The proof of the first statement uses a nice geometric argument and the sandwich theorem.

Rule

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad and \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$

- Note that the angle x is measured in radians.
- The proof of the first statement uses a nice geometric argument and the sandwich theorem.
- The second statement follows from the first.

Trigonometric Functions

We will sometimes use the double angle formulas

- $one cos(2\alpha) = cos^2(\alpha) sin^2(\alpha)$
- 2 $\sin(2\alpha) = 2\sin\alpha\cos\alpha$.

Trigonometric Functions

We will sometimes use the double angle formulas

•
$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

2 $\sin(2\alpha) = 2\sin\alpha\cos\alpha$.

which are special cases of the following addition formulas

$$one (\alpha + \beta) = \cos \beta \cos \alpha - \sin \alpha \sin \beta.$$

2
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
.

We will sometimes use the double angle formulas

•
$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

2 $\sin(2\alpha) = 2\sin\alpha\cos\alpha$.

which are special cases of the following addition formulas

•
$$\cos(\alpha + \beta) = \cos\beta\cos\alpha - \sin\alpha\sin\beta.$$

• $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta.$

What about $sin(\alpha/2)$ and $cos(\alpha/2)$?

$$\cos(lpha/2) = \pm \sqrt{rac{1+\coslpha}{2}}$$
 and $\sin(lpha/2) = \pm \sqrt{rac{1-\coslpha}{2}}$

(the sign (+ or -) depends on the quadrant in which $\alpha/2$ lies.)

Example (Online Homework HW10, #7)

Evaluate

im →0	$\sin 4\theta \sin 8\theta$	
	θ^2	•

• • • • • • • • • • • •

Example (Online Homework HW10, #10)

Evaluate the limit:

 $\lim_{x\to 0}\frac{\tan 5x}{\tan 6x}$

Example (Neuhauser, Example 3(c), p. 118)

Evaluate the limit:

 $\lim_{x\to 0}\frac{\sec x-1}{x\sec x}$

David Murrugarra (University of Kentucky)

MA 137: Section 4.1

< 🗇 🕨 < 🖻 🕨

Example (Online Homework HW10, #14)

A semicircle with diameter *PQ* sits on an isosceles triangle *PQR* to form a region shaped like an ice cream cone, as shown in the figure. If $A(\theta)$ is the area of the semicircle and $B(\theta)$ is the area of the triangle, find $\lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$.

MA 137: Section 4.1

 Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.
- By contrast, in populations that breed continuously, there is no natural time scale such as generations. Instead, we will look at how the population size changes over small time intervals.

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.
- By contrast, in populations that breed continuously, there is no natural time scale such as generations. Instead, we will look at how the population size changes over small time intervals.
- We denote the population size at time *t* by N(t), where t is now varying continuously over the interval $[0, \infty)$. We investigate how the population size changes during the interval $[t_0, t_0 + h]$, where h > 0. The absolute change during this interval, denoted by ΔN , is $\Delta N = N(t_0 + h) N(t_0)$.

< □ > < □ > < □ > < □ > <

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.
- By contrast, in populations that breed continuously, there is no natural time scale such as generations. Instead, we will look at how the population size changes over small time intervals.
- We denote the population size at time *t* by N(t), where t is now varying continuously over the interval $[0, \infty)$. We investigate how the population size changes during the interval $[t_0, t_0 + h]$, where h > 0. The absolute change during this interval, denoted by ΔN , is $\Delta N = N(t_0 + h) N(t_0)$.
- To obtain the relative change during this interval, we divide ΔN by the length of the interval, denoted by Δt, which is h. We find that

$$\frac{\Delta N}{\Delta} = \frac{N(t_0 + h) - N(t_0)}{h}$$

This ratio is called the average growth rate.

The slope of the tangent line is called the **instantaneous growth rate** (at t_0) and is a convenient way to describe the growth of a continuously breeding population.

A D M A A A M M

The slope of the tangent line is called the **instantaneous growth rate** (at t_0) and is a convenient way to describe the growth of a continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to shrink the length of the interval $[t_0, t_0 + h]$ to 0 by letting *h* tend to 0. We express this operation as

$$\lim_{\Delta t \to 0} \frac{\Delta N}{\Delta} = \lim_{h \to 0} \frac{N(t_0 + h) - N(t_0)}{h}$$

The slope of the tangent line is called the **instantaneous growth rate** (at t_0) and is a convenient way to describe the growth of a continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to shrink the length of the interval $[t_0, t_0 + h]$ to 0 by letting *h* tend to 0. We express this operation as

$$\lim_{\Delta t \to 0} \frac{\Delta N}{\Delta} = \lim_{h \to 0} \frac{N(t_0 + h) - N(t_0)}{h}$$

In the expression above, we take a limit of a quantity in which a continuously varying variable, namely, *h*, approaches some fixed value, namely, 0.

< ロ > < 同 > < 回 > < 回 >

The slope of the tangent line is called the **instantaneous growth rate** (at t_0) and is a convenient way to describe the growth of a continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to shrink the length of the interval $[t_0, t_0 + h]$ to 0 by letting *h* tend to 0. We express this operation as

$$\lim_{\Delta t \to 0} \frac{\Delta N}{\Delta} = \lim_{h \to 0} \frac{N(t_0 + h) - N(t_0)}{h}$$

In the expression above, we take a limit of a quantity in which a continuously varying variable, namely, *h*, approaches some fixed value, namely, 0.

We denote the limiting value of $\Delta N/\Delta t$ as $\Delta t \rightarrow 0$ by $N'(t_0)$ (read "*N* prime of t_0 ") and call this quantity **the derivative of** N(t) **at** t_0 , provided that this limit exists!

David Murrugarra (University of Kentucky)

We formalize the previous discussion for any function *f* . The average rate of change of the function y = f(x) between $x = x_0$ and $x = x_1$ is

$$\frac{\text{change in } y}{\text{change in } x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

By setting $h = x_1 - x_0$, i.e., $x_1 = x_0 + h$, the above expression becomes

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}$$

Those quantities represent the slope of the secant line that passes through the points $P(x_0, f(x_0))$ and $Q(x_1, f(x_1))$ [or $P(x_0, f(x_0))$ and $Q(x_0 + h, f(x_0 + h))$, respectively].

The instantaneous rate of change is defined as the result of computing the average rate of change over smaller and smaller intervals.

Definition

The derivative of a function *f* at x_0 , denoted by $f'(x_0)$, is

$$f'(x_0) = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided that the limit exists. In this case we say that the function f is differentiable at x_0 .

The instantaneous rate of change is defined as the result of computing the average rate of change over smaller and smaller intervals.

Definition

The derivative of a function *f* at x_0 , denoted by $f'(x_0)$, is

$$f'(x_0) = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided that the limit exists. In this case we say that the function f is differentiable at x_0 .

Geometrically $f'(x_0)$ represents the slope of the tangent line.

Example (Online Homework HW11, #3)

Let f(x) be the function $12x^2 - 2x + 11$. Then the quotient $\frac{f(1+h)-f(1)}{h}$ can be simplified to ah + b for $a = _$ and $b = _$.

Compute

$$\lim_{h\to 0}\frac{f(1+h)-f(1)}{h}$$

David Murrugarra (University of Kentucky)

MA 137: Section 4.1

< /₽ > < ∃ > <