MA 137: Calculus I for the Life Sciences

David Murrugarra

Department of Mathematics, University of Kentucky
http://www.ms.uky.edu/~ma137/
Spring 2017

WiE.
KENTUCKY

Section 3.4: Trigonometric Limits

The following two trigonometric limits are important for developing the differential calculus for trigonometric functions:

Rule

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

Section 3.4: Trigonometric Limits

The following two trigonometric limits are important for developing the differential calculus for trigonometric functions:

Rule

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

- Note that the angle x is measured in radians.

Section 3.4: Trigonometric Limits

The following two trigonometric limits are important for developing the differential calculus for trigonometric functions:

Rule

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

- Note that the angle x is measured in radians.
- The proof of the first statement uses a nice geometric argument and the sandwich theorem.

Section 3.4: Trigonometric Limits

The following two trigonometric limits are important for developing the differential calculus for trigonometric functions:

Rule

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

- Note that the angle x is measured in radians.
- The proof of the first statement uses a nice geometric argument and the sandwich theorem.
- The second statement follows from the first.

Trigonometric Functions

We will sometimes use the double angle formulas
(1) $\cos (2 \alpha)=\cos ^{2}(\alpha)-\sin ^{2}(\alpha)$
(2) $\sin (2 \alpha)=2 \sin \alpha \cos \alpha$.

Trigonometric Functions

We will sometimes use the double angle formulas
(1) $\cos (2 \alpha)=\cos ^{2}(\alpha)-\sin ^{2}(\alpha)$
(2) $\sin (2 \alpha)=2 \sin \alpha \cos \alpha$.
which are special cases of the following addition formulas
(1) $\cos (\alpha+\beta)=\cos \beta \cos \alpha-\sin \alpha \sin \beta$.
(2) $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

Trigonometric Functions

We will sometimes use the double angle formulas
(1) $\cos (2 \alpha)=\cos ^{2}(\alpha)-\sin ^{2}(\alpha)$
(2) $\sin (2 \alpha)=2 \sin \alpha \cos \alpha$.
which are special cases of the following addition formulas
(1) $\cos (\alpha+\beta)=\cos \beta \cos \alpha-\sin \alpha \sin \beta$.
(2) $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

What about $\sin (\alpha / 2)$ and $\cos (\alpha / 2) ?$

$$
\cos (\alpha / 2)= \pm \sqrt{\frac{1+\cos \alpha}{2}} \text { and } \sin (\alpha / 2)= \pm \sqrt{\frac{1-\cos \alpha}{2}}
$$

(the sign (+ or -) depends on the quadrant in which $\alpha / 2$ lies.)

Section 3.4: Trigonometric Limits

Example (Online Homework HW10, \#7)

Evaluate

$$
\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta \sin 8 \theta}{\theta^{2}}
$$

Section 3.4: Trigonometric Limits

Example (Online Homework HW10, \#10)
Evaluate the limit:
$\lim _{x \rightarrow 0} \frac{\tan 5 x}{\tan 6 x}$

Section 3.4: Trigonometric Limits

Example (Neuhauser, Example 3(c), p. 118)

Evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{\sec x-1}{x \sec x}
$$

Example (Online Homework HW10, \#14)

A semicircle with diameter $P Q$ sits on an isosceles triangle $P Q R$ to form a region shaped like an ice cream cone, as shown in the figure. If $A(\theta)$ is the area of the semicircle and $B(\theta)$ is the area of the triangle, find $\lim _{\theta \rightarrow 0^{+}} \frac{A(\theta)}{B(\theta)}$.

Figure: Ice cream cone.

Section 4.1: Average Growth Rate

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.

Section 4.1: Average Growth Rate

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.
- By contrast, in populations that breed continuously, there is no natural time scale such as generations. Instead, we will look at how the population size changes over small time intervals.

Section 4.1: Average Growth Rate

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.
- By contrast, in populations that breed continuously, there is no natural time scale such as generations. Instead, we will look at how the population size changes over small time intervals.
- We denote the population size at time t by $N(t)$, where t is now varying continuously over the interval $[0, \infty)$. We investigate how the population size changes during the interval $\left[t_{0}, t_{0}+h\right]$, where $h>0$. The absolute change during this interval, denoted by ΔN, is $\Delta N=N\left(t_{0}+h\right)-N\left(t_{0}\right)$.

Section 4.1: Average Growth Rate

- Population growth in populations with discrete breeding seasons (as discussed in Chapter 2) can be described by the change in population size from generation to generation.
- By contrast, in populations that breed continuously, there is no natural time scale such as generations. Instead, we will look at how the population size changes over small time intervals.
- We denote the population size at time t by $N(t)$, where t is now varying continuously over the interval $[0, \infty)$. We investigate how the population size changes during the interval $\left[t_{0}, t_{0}+h\right]$, where $h>0$. The absolute change during this interval, denoted by ΔN, is $\Delta N=N\left(t_{0}+h\right)-N\left(t_{0}\right)$.
- To obtain the relative change during this interval, we divide ΔN by the length of the interval, denoted by Δt, which is h. We find that

$$
\frac{\Delta N}{\Delta}=\frac{N\left(t_{0}+h\right)-N\left(t_{0}\right)}{h}
$$

This ratio is called the average growth rate.

Section 4.1: Instantaneous Growth Rate

The slope of the tangent line is called the instantaneous growth rate (at t_{0}) and is a convenient way to describe the growth of a continuously breeding population.

Section 4.1: Instantaneous Growth Rate

The slope of the tangent line is called the instantaneous growth rate (at t_{0}) and is a convenient way to describe the growth of a continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to shrink the length of the interval $\left[t_{0}, t_{0}+h\right]$ to 0 by letting h tend to 0 . We express this operation as

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta N}{\Delta}=\lim _{h \rightarrow 0} \frac{N\left(t_{0}+h\right)-N\left(t_{0}\right)}{h}
$$

Section 4.1: Instantaneous Growth Rate

The slope of the tangent line is called the instantaneous growth rate (at t_{0}) and is a convenient way to describe the growth of a continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to shrink the length of the interval $\left[t_{0}, t_{0}+h\right]$ to 0 by letting h tend to 0 . We express this operation as

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta N}{\Delta}=\lim _{h \rightarrow 0} \frac{N\left(t_{0}+h\right)-N\left(t_{0}\right)}{h}
$$

In the expression above, we take a limit of a quantity in which a continuously varying variable, namely, h, approaches some fixed value, namely, 0.

Section 4.1: Instantaneous Growth Rate

The slope of the tangent line is called the instantaneous growth rate (at t_{0}) and is a convenient way to describe the growth of a continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to shrink the length of the interval $\left[t_{0}, t_{0}+h\right]$ to 0 by letting h tend to 0 . We express this operation as

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta N}{\Delta}=\lim _{h \rightarrow 0} \frac{N\left(t_{0}+h\right)-N\left(t_{0}\right)}{h}
$$

In the expression above, we take a limit of a quantity in which a continuously varying variable, namely, h, approaches some fixed value, namely, 0.

We denote the limiting value of $\Delta N / \Delta t$ as $\Delta t \rightarrow 0$ by $N^{\prime}\left(t_{0}\right)$ (read " N prime of t_{0} ") and call this quantity the derivative of $N(t)$ at t_{0}, provided that this limit exists!

Section 4.1: The Derivative of a Function

We formalize the previous discussion for any function f. The average rate of change of the function $y=f(x)$ between $x=x_{0}$ and $x=x_{1}$ is

$$
\frac{\text { change in } y}{\text { change in } x}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

By setting $h=x_{1}-x_{0}$, i.e., $x_{1}=x_{0}+h$, the above expression becomes

$$
\frac{\Delta f}{\Delta x}=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Those quantities represent the slope of the secant line that passes through the points $P\left(x_{0}, f\left(x_{0}\right)\right)$ and $Q\left(x_{1}, f\left(x_{1}\right)\right)$ [or $P\left(x_{0}, f\left(x_{0}\right)\right)$ and $Q\left(x_{0}+h, f\left(x_{0}+h\right)\right)$, respectively].

Section 4.1: Formal Definition of the Derivative

The instantaneous rate of change is defined as the result of computing the average rate of change over smaller and smaller intervals.

Definition

The derivative of a function f at x_{0}, denoted by $f^{\prime}\left(x_{0}\right)$, is

$$
f^{\prime}\left(x_{0}\right)=\lim _{x_{1} \rightarrow x_{0}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided that the limit exists. In this case we say that the function f is differentiable at x_{0}.

Section 4.1: Formal Definition of the Derivative

The instantaneous rate of change is defined as the result of computing the average rate of change over smaller and smaller intervals.

Definition

The derivative of a function f at x_{0}, denoted by $f^{\prime}\left(x_{0}\right)$, is

$$
f^{\prime}\left(x_{0}\right)=\lim _{x_{1} \rightarrow x_{0}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided that the limit exists. In this case we say that the function f is differentiable at x_{0}.

Geometrically $f^{\prime}\left(x_{0}\right)$ represents the slope of the tangent line.

Section 4.1: Formal Definition of the Derivative

Example (Online Homework HW11, \#3)

Let $f(x)$ be the function $12 x^{2}-2 x+11$. Then the quotient $\frac{f(1+h)-f(1)}{h}$ can be simplified to $a h+b$ for $a=$ \qquad and $b=$ \qquad .

Compute

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

