MA137 - Calculus 1 with Life Science Applications Course Introduction \& Preliminaries and Elementary Functions (Sections 1.1 \& 1.2)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

August 24, 2016

Instructor

Teaching Assistants (TAs)

Instructor

- Instructor:
- Lecture:
- Office:
- Office Hours:
- Email:
- Web:
- Course Web:

Alberto Corso
MWF 10:00-10:50am - CB 118
POT (\equiv Patterson Office Tower) 701
MWF 11 am - 12 noon, and by appointment
alberto.corso@uky.edu
http://www.ms.uky.edu/~ corso
http://www.ms.uky.edu/~ma137

Teaching Assistants (TAs)

Section	Time/Location	TA information
$\mathbf{0 0 5}$	TR 12:00-12:50pm - CB 339	Stephen Deterding
$\mathbf{0 0 6}$	TR 01:00-01:50pm - CB 339	deterding@uky.edu
$\mathbf{0 0 3}$	TR 10:00-10:50am - CB 339	Kalila Sawyer
$\mathbf{0 0 4}$	TR 11:00-11:50am - CB 339	kalila.sawyer@uky.edu
$\mathbf{0 0 1}$	TR 08:00-08:50am - CB 339	Luis Sordo Vieira
$\mathbf{0 0 2}$	TR 09:00-09:50am - CB 339	sordovieira@uky.edu
$\mathbf{0 0 7}$	TR 02:00-02:50pm - CB 339	Matias von Bell
$\mathbf{0 0 8}$	TR 03:00-03:50pm - CB 339	matias.vonbell@uky.edu

Textbook

Title: Calculus for Biology and Medicine

Author: Claudia Neuhauser

Publisher: Pearson

Edition: Third

ISBN: ISBN 10: 0-321-64468-9
ISBN 13: 978-0-321-64468-8

Course Outline for MA 137

Ch. 1: Preview and review
Ch. 2: Discrete time models, sequences, and difference equations
Ch. 3: Limits and continuity
Ch. 4: Differentiation
Ch. 5: Applications of differentiation
Ch. 6: Integration

If you are planning on taking MA 138, the course outline for MA 138 is:
Ch. 7: Integration techniques and computational methods
Ch. 8: Differential equations
Ch. 9: Linear algebra and analytic geometry
Ch. 10: Multivariable calculus
Ch. 11: Systems of differential equations

Grading

You will be able to obtain a maximum of 500 points in this class, divided as follows:

- Three 2-hour exams, 100 points each;
- Final exam, 100 points;
- Homework, 40 points;
- Quizzes, 40 points;
- Final project (Gen Ed requirement), 20 points;

Your final grade for the course will be based on the total points you have earned as follows:
A: 450-500
B: 400-449
C: 350-399
D: 300-349
E: 0-299
$\geq 90 \%$
$\geq 80 \%$
$\geq 70 \% \quad \geq 60 \%$
$<60 \%$

Exams (Regular and Alternate)

Regular Exams will be given on Tuesdays from 5:00-7:00 pm

- September 20
- October 18
- November 15

Alternate Exams for Exams 1-3 are given on the same days as the regular exams from 7:30-9:30 pm (September 20, October 18, November 15).

Review Sessions will be held on Monday September 19, October 17 and November 14 from 6:00-8:00 pm.

```
Textboak
Course Outtine for MA 137
Grading
Exams (Regular and Altemate) & Homework
Homework
REEF Palling
2Mlnoring in Mathematics?
```


Homework

- The homework associated to MA137 is mostly done online. There are three exceptions where there are three handwritten homework assignments.
- The online homework (WeBWorK) can be accessed through https://webwork.as.uky.edu/webwork2/MA137F16/
- Your username is your Link Blue user ID (use capital letters!) and your password is your 8 digit student ID number.
- You can try online problems as many times as you like. The system will tell you if your answer is correct or not. You can email the TA a question from each of the problem. TAs will always do their best to respond within 24 hours.
- Don't wait until the last minute!

REEF Polling

- If you are taking an introductory Chemistry class you are likely to be required to use REEF Polling by iClicker.
- If you already have a REEF account, add this course by selecting the " + " button on the top-right of your Courses page, selecting the University of Kentucky as your institution, and searching for this course, "MA 137 - Calculus 1 with Life Science Applications."
- REEF polling by iClicker lets you use your laptop, smart phone, tablet, or physical iClicker remote to answer questions in class.
- To create an account, purchase a subscription, and/or register a physical iClicker remote, visit
http://support.reef-education.com
- If none of your classes uses REEF Polling, there is no need to purchase a subscription.

¿Minoring in Mathematics?

To obtain a minor in Mathematics, a student who has completed MA 137/138 Calculus I and II must complete the following:

1. MA 213 - Calculus III (4 credits)
2. MA 322 - Matrix Algebra and Its Applications (3 credits)
3. Six additional credit hours of Mathematics courses (=two courses) numbered greater than 213. Possible courses include: MA 214, MA 261, MA 320, MA 321, MA 327 (Introduction to game theory), MA 330, MA 341, MA 351, MA 361, or any 400 level math course
4. We are also planning to create a new modeling course by Fall 2017 at the upper level in Mathematics. Stay tuned!!
¿ MA 337: Modeling Nature and the nature of modeling?
Thus you need 13 additional credit hours in Mathematics classes.

Definition

Definition of Function

A function f is a rule that assigns to each element x in a set A exactly one element, called $f(x)$, in a set B.

The set A is called the domain of f whereas the set B is called the codomain of $f ; f(x)$ is called the value of f at x, or the image of x under f.

The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain: range of $f=\{f(x) \mid x \in A\}$.

Machine diagram of f

Definition

Evaluating a Function
The Domain of a Function
The Graph ol a Function
The Verifical line Test

Arrow diagram of f

Notation: To define a function, we often use the notation

$$
f: A \longrightarrow B, \quad x \mapsto f(x)
$$

Evaluating a Function

The symbol that represents an arbitrary number in the domain of a function f is called an independent variable.

The symbol that represents a number in the range of f is called a dependent variable.

In the definition of a function the independent variable plays the role of a "placeholder".

For example, the function $f(x)=2 x^{2}-3 x+1$ can be thought of as

$$
f(\square)=2 \cdot \square^{2}-3 \cdot \square+1
$$

To evaluate f at a number (expression), we substitute the number (expression) for the placeholder.

Definition

The Domain of a Function

The domain of a function is the set of all inputs for the function.
The domain may be stated explicitly.
For example, if we write

$$
f(x)=1-x^{2} \quad-2 \leq x \leq 5
$$

then the domain is the set of all real numbers x for which $-2 \leq x \leq 5$.
If the function is given by an algebraic expression and the domain is not stated explicitly, then by convention the domain is the set of all real numbers for which the expression is defined.

Fact: Two functions f and g are equal if and only if

1. f and g are defined on the same domain,
2. $f(x)=g(x)$ for all x in the domain.

Graphs of Functions

The graph of a function is the most important way to visualize a function. It gives a picture of the behavior or 'life history' of the function.
We can read the value of $f(x)$ from the graph as being the height of the graph above the point x.

If f is a function with domain A, then the graph of f is the set of ordered pairs

$$
\text { graph of } f=\{(x, f(x)) \mid x \in A\} .
$$

In other words, the graph of f is the set of all points (x, y) such that $y=f(x)$; that is, the graph of f is the graph of the equation $y=f(x)$.

Obtaining Information from the Graph of a Function

The values of a function are represented by the height of its graph above the x-axis. So, we can read off the values of a function from its graph.

In addition, the graph of a function helps us picture the domain and range of the function on the x-axis and y-axis as shown in the picture:

The Vertical Line Test

The graph of a function is a curve in the $x y$-plane. But the question arises: Which curves in the $x y$-plane are graphs of functions?

The Vertical Line Test

A curve in the coordinate plane is the graph of a function if and only if no vertical line intersects the curve more than once.

Vertical Shifting

Herizontal Shifting
Reflecting Graphs
Vertical Stretching and Shinking
Horizontal Shrinking and Stretching

Vertical Shifting

Suppose c>0.
To graph $y=f(x)+c$, shift the graph of $y=f(x)$ upward c units.
To graph $y=f(x)-c$, shift the graph of $y=f(x)$ downward c units.

$10 / 22$

Consider for example the parabola $y=x^{2}$ whose graph is

Then the graph of

whereas the graph of,

$$
y=x^{2}-1 \text { is } \downarrow
$$

Horizontal Shifting

Suppose c>0.

To graph $y=f(x-c)$, shift the graph of $y=f(x)$ to the right c units.
To graph $y=f(x+c)$, shift the graph of $y=f(x)$ to the left c units.

Consider again $y=x^{2}$

Reflecting Graphs

To graph $y=-f(x)$, reflect the graph of $y=f(x)$ in the x-axis.

$$
y=f(x)
$$

$$
\text { To graph } y=f(-x)
$$ reflect the graph of $y=f(x)$ in the y-axis.

Reflection with uppect to the x-axis

Consider $y=x^{2}+2$

Then $y=-\left(x^{2}+2\right)$ has graph

Reflection with suspect to the y-axis

Considu $\quad y=e^{x}$

Then $y=e^{(-x)}$
has grople

Vertical Shirting:

Horizontal Shiting
Rellecting Graphs
Vertical Stretching and Shrinking
Horizontal Shrinking and Stretching

Vertical Stretching and Shrinking

To graph $y=c f(x)$:
If $c>1$, STRETCH the graph of $y=f(x)$ vertically by a factor of c.
If $0<c<1$, SHRINK the graph of $y=f(x)$ vertically by a factor of c.

$0<c<1$
$2 / 2 / 2$

Cousidu $y=x^{2}$

Then we have that

Horizontal Shrinking and Stretching

To graph $y=f(c x)$:
If $c>1$, shrink the graph of $y=f(x)$ horizontally by a factor of $1 / c$.
If $0<c<1$, stretch the graph of $y=f(x)$ horizontally by a factor of $1 / c$.

$$
c>1
$$

$0<c<1$
$22 / 22$

Consider for example $\quad y=\cos (x)$

$\xrightarrow[\text { Then }]{\text { Th }} \underset{\sim}{\cos (2 x)}$ has graph:
Then $\sqrt{y=\frac{\cos \left(\frac{1}{2} x\right)}{\uparrow} \text { 保 as graph }}$

MA137 - Calculus 1 with Life Science Applications Preliminaries and Elementary Functions

 (Sections 1.1 \& 1.2)Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky
August 26, 2016

Basic Functions

We introduce the basic functions that we will consider throughout the remainder of the semester.

- polynomial functions

A polynomial function is a function of the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

where n is a nonnegative integer and $a_{0}, a_{1}, \ldots, a_{n}$ are (real) constants with $a_{n} \neq 0$. The coefficient a_{n} is called the leading coefficient, and n is called the degree of the polynomial function. The largest possible domain of f is \mathbb{R}.

Examples Suppose a, b, c, and m are constants.

- Constant functions: $f(x)=c$ (graph is a horizontal line);
- Linear functions: $f(x)=m x+b$ (graph is a straight line);
- Quadratic functions: $f(x)=a x^{2}+b x+c$ (graph is a parabola).
- rational functions

A rational function is the quotient of two polynomial functions $p(x)$ and $q(x): \quad f(x)=\frac{p(x)}{q(x)}$ for $q(x) \neq 0$.

Example The Monod growth function is frequently used to describe the per capita growth rate of organisms when the rate depends on the concentration of some nutrient and becomes saturated for large enough nutrient concentrations.
If we denote the concentration of the nutrient by N, then the per capita growth rate $r(N)$ is given by

$$
r(N)=\frac{a N}{k+N}, \quad N \geq 0
$$

where a and k are positive constants.

- power functions

A power function is of the form $f(x)=x^{r}$ where r is a real number.
Example Power functions are frequently found in "scaling relations" between biological variables (e.g., organ sizes).
Finding such relationships is the objective of allometry. For example, in a study of 45 species of unicellular algae, a relationship between cell volume and cell biomass was sought. It was found [see, Niklas (1994)] that

$$
\text { cell biomass } \propto(\text { cell volume })^{0.794}
$$

Most scaling relations are to be interpreted in a statistical sense; they are obtained by fitting a curve to data points. The data points are typically scattered about the fitted curve given by the scaling relation.

- exponential and logarithmic functions
- trigonometric functions

Example 1 (Problem \#52, Section 1.1, p. 14):

The Celsius scale is devised so that $0^{\circ} \mathrm{C}$ is the freezing point of water (at 1 atmosphere of pressure) and $100^{\circ} \mathrm{C}$ is the boiling point of water (at 1 atmosphere of pressure).
If you are more familiar with the Fahrenheit scale, then you know that water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$.
(a) Find a linear equation/function that relates temperature measured in degrees Celsius and temperature measured in degrees Fahrenheit.
(b) The normal body temperature in humans ranges from $97.6^{\circ} \mathrm{F}$ to $99.6^{\circ} \mathrm{F}$. Convert this temperature range into degrees Celsius.
$F=a C+b$ a linear ulation

* when $C=0$ then $F=32$ so that

$$
32=a \cdot 0+b \quad \Longrightarrow \quad b=32
$$

* when $C=100$ then $F=212$ so that

$$
\begin{aligned}
& 212=a \cdot 100+32 \quad \Rightarrow \quad 100 a=212-32 \\
& \Rightarrow a=\frac{180}{100}=9 / 5 \quad \therefore \quad F=\frac{9}{5} C+32
\end{aligned}
$$

(alternatively, we can solve for C

$$
\begin{aligned}
& F=9 / 5 C+32 \Longleftrightarrow 5 F=9 C+160 \\
& \Leftrightarrow C=\frac{5}{9} F-\frac{160}{9} \cong \frac{5}{9} F-17.7
\end{aligned}
$$

(b) $97.6 \leq F \leq 99.6$
is the range of nounal body temperature in humans

Substitute: $\quad 97.6 \leq \frac{9}{5} C+32 \leq 99.6$ and write it in terns of C alone

$$
\begin{array}{ll}
\Leftrightarrow & 97.6-32 \leq 9 / 5 C \leq 99.6-32 \\
\Leftrightarrow & 65.6 \leq 9 / 5 C \leq 67.6 \\
\Leftrightarrow & 5 / 9.65 .6 \leq C \leq \frac{5}{9} 67.6 \\
\Leftrightarrow & 36.44 \leq C \leq 37.55
\end{array}
$$

Example 2:

When a certain drug is taken orally, the concentration of the drug in the patient's bloodstream after t minutes is given by

$$
C(t)=0.06 t-0.0002 t^{2}
$$

where $0 \leq t \leq 240$ and the concentration is measured in mg / L. When is the maximum serum concentration reached? What is that maximum concentration?

Consider $\quad C(t)=0.06 t-0.0002 t^{2}$ and rewrite it as

$$
C(t)=-0.0002 t^{2}+0.06 t
$$

We want to complete the squares:

$$
\begin{aligned}
C(t) & =-0.0002\left[t^{2}-\frac{0.06}{0.0002} t\right]=-0.0002\left[t^{2}-300 t\right] \\
& =-0.0002\left[t^{2}-300 t+\left(\frac{300}{2}\right)^{2}\right]+4.5
\end{aligned}
$$

notice that $4.5=0.0002\left(\frac{300}{2}\right)^{2}$

$$
\therefore \quad C(t)=-0.0002(t-150)^{2}+4.5
$$

\therefore maximum serum
concentration at $t=150 ; \therefore$ maximum concentration 4.5

The graph of $C(t)=-0.0002(t-150)^{2}+4.5$ is obtained as follows via elementary tranifomet.

Finally

Example 3: (Michaelis-Menten enzymatic reaction)

According to the Michaelis-Menten equation (1913) when a chemical reaction involving a substrate S is catalyzed by an enzime, the rate of reaction $V=V([\mathrm{~S}])$ is given by the expression

$$
V=\frac{V_{\max }[\mathrm{S}]}{K_{m}+[\mathrm{S}]},
$$

where [S] denotes substrate concentration (for examples in moles per liter), and $V_{\text {max }}$ and K_{m} are constants.
$V_{\text {max }}$ is the maximal velocity of the reaction and K_{m} is the Michaelis constant.
K_{m} is the substrate concentration at which the reaction achieves half of the maximum velocity.
Graph V assuming that $V_{\max }=3$ and $K_{m}=2$. That is,

$$
V=\frac{3[\mathrm{~S}]}{2+[\mathrm{S}]} .
$$

$V=\frac{V_{\max }[s]}{K_{m}+[s]} \leadsto V=\frac{3[s]}{2+[s]}$ or if you
prefer to change variables $y=\frac{3 x}{2+x}$
Rewrite as: $y=\frac{3 x}{2+x}=\frac{3 x+6-6}{x+2}=\frac{3(x+2)-6}{x+2}$

$$
\begin{equation*}
=\frac{3(x+2)}{x+2}-\frac{6}{x+2}=3-\frac{6}{x+2} \tag{114}
\end{equation*}
$$

Now use the elementary tho 1 formation:

Finally and clanging back the variables

$$
V=\frac{3[s]}{2+[s]}=3-\frac{6}{[s]+2}
$$

Example 4:

Find the scaling relation between the surface area S and the volume V of a sphere of radius R.
[More precisely, show that $S=(36 \pi)^{1 / 3} V^{2 / 3}$, that is, $S \propto V^{2 / 3}$.]

Recall that the volume of a sphere of radius R is

$$
V=\frac{4}{3} \pi R^{3}
$$

The surface of a sphere of radius R is: $\quad S=4 \pi R^{2}$

We wont to write S as a function of V.
FROM: $V=\frac{4}{3} \pi R^{3} \longrightarrow \frac{3}{4 \pi} V=R^{3}$

$$
\rightarrow R=\sqrt[3]{\frac{3}{4 \pi} v}=\left(\frac{3}{4 \pi} v\right)^{1 / 3}
$$

Substitute in $S=4 \pi R^{2}$ to get

$$
S=4 \pi\left[\left(\frac{3}{4 \pi} V\right)^{1 / 3}\right]^{2}
$$

$$
\begin{aligned}
\therefore \quad S & =4 \pi\left(\frac{3}{4 \pi}\right)^{2 / 3} \cdot V^{2 / 3} \\
& 1 \\
& =\left[(4 \pi)^{3}\left(\frac{3}{4 \pi}\right)^{2}\right]^{1 / 3} \cdot V^{2 / 3} \\
& =\left(64 \pi^{3} \cdot \frac{9}{16 \pi^{2}}\right)^{1 / 3} \cdot V^{2 / 3} \\
& =(36 \pi)^{1 / 3} \cdot V^{2 / 3}
\end{aligned}
$$

i.e. $S \propto V^{2 / 3}$

MA137-Calculus 1 with Life Science Applications Operations on Functions Inverse of a Function and its Graph (Sections 1.2 \& 1.3)

Alberto Corso

〈alberto.corso@uky.edu〉

Department of Mathematics
University of Kentucky

August 29, 2016

Even and Odd Functions

Let f be a function.
f is even if $f(-x)=f(x)$ for all x in the domain of f. f is odd if $f(-x)=-f(x)$ for all x in the domain of f.

Graph symmetric wrt y-axis.

Graph symmetric wrt $(0,0)$.

Example:

$y=\cos x$ is an even function; $\quad y=\sin x$ is an odd function.

Example 1:

Determine whether the following functions are even or odd:

$$
f(x)=x^{3}+2 x^{5}
$$

$$
g(x)=x^{2}-3 x^{4}
$$

(a)

$$
\begin{aligned}
f(x) & =x^{3}+2 x^{5} \\
f(-x) & =(-x)^{3}+2(-x)^{5}=-x^{3}-2 x^{5}=-\left[x^{3}+2 x^{5}\right] \\
& =-f(x)
\end{aligned}
$$

thus f is an odd function
(b)

$$
\begin{aligned}
& g(x)=x^{2}-3 x^{4} \\
& g(-x)=(-x)^{2}-3(-x)^{4}=x^{2}-3 x^{4}=g(x)
\end{aligned}
$$

thus g is an even function
NoTE:
In (a) the polynomial only has odd exponents In (b) the polynomial only has even exponents

Curious/Amazing Fact!

Any function can be uniquely written as an even plus an odd function.
Example:

$$
e^{x}=\underbrace{\frac{e^{x}+e^{-x}}{2}}_{\cosh x}+\underbrace{\frac{e^{x}-e^{-x}}{2}}_{\sinh x}
$$

Example 2: (Online Homework HW02, \#11)

(Since we talked about trigonometric functions...)
The lungs do not completely empty or completely fill in normal breathing. The volume of the lungs normally varies between 2140 ml and 2700 ml with a breathing rate of 22 breaths $/ \mathrm{min}$. This exchange of air is called the tidal volume.
One approximation for the volume of air in the lungs uses the cosine function written in the following manner:

$$
V(t)=A+B \cos (\omega t)
$$

where A, B, and ω are constants and t is in minutes. Use the data above to create a model, finding the constants $A=$ \qquad $B=\ldots$, and $\omega=$, that simulates the normal breathing of an individual for one minute.

Fact: $y=\cos (t)$ is a period function, of period 2π, with values between 1 and -1 . That is the amplitude of the oscillation is 2 and the oscillation is along the lime $y=0$.

In our ease $V(t)=A+B \cos (\omega t)$ represents then volume of the lungs. This vale ranges between 2140 and 2700 me. There runt be 22 free cycles in a 1 minute period. The graph must look like:
 cillatirns along
this line Vo

Notice that the amplitute of the oscillations is 2700-2140 $=560$ hence B must be hale of that: $B=280$. Moreover the oncilletions must be about the lime $V_{0}=2140+280=2420$ (Observe $\left.2420=\frac{2140+2700}{2}=2700-280\right) \quad \therefore A=2420$

$$
V(t)=2420+280 \cos (\underline{\underline{\omega}} t)
$$

To determine $\underline{\omega}$, observe that since we have 22 breaths in one minute, the volume must have the Same values at time: $t, t+\frac{1}{22}, t+\frac{2}{22}, t+\frac{3}{22}, \cdots$ $\cdots, t+\frac{22}{22}=t+1$. That is

$$
V(t)=V\left(t+\frac{1}{22}\right)=V\left(t+\frac{2}{22}\right)=\text { etc... }
$$

in particular, during the interval $t, t+1 / 22$ we have one full breath.

This means:

$$
\begin{aligned}
& \left.V(t)=V(t+1 / 22) \Longleftrightarrow A+B \cos (\omega t) \stackrel{\downarrow}{=} A+B \cos \left(\omega t+\frac{1}{22}\right)\right) \\
& \Longleftrightarrow \quad \cos (\omega t)=\cos \left(\omega t+\omega \cdot \frac{1}{22}\right)
\end{aligned}
$$

Because $\cos ($.$) is periodic of period 2 \pi$ we must have $\omega \cdot \frac{1}{22}=2 \pi$

$$
\Rightarrow \quad \omega=2 \pi \cdot 22=44 \pi=138.23
$$

Thus: $V(t)=2420+280 \cos (138.23 t) / 4$

Combining functions

Let f and g be functions with domains A and B. We define new functions $f+g, f-g, f g$, and f / g as follows:

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x) & \text { Domain } A \cap B \\
(f-g)(x)=f(x)-g(x) & \text { Domain } A \cap B
\end{array}
$$

$$
(f g)(x)=f(x) g(x) \quad \text { Domain } A \cap B
$$

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
$$

Domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Composition of Functions

Given any two functions f and g, we start with a number x in the domain of g and find its image $g(x)$. If this number $g(x)$ is in the domain of f, we can then calculate the value of $f(g(x))$.

The result is a new function $h(x)=f(g(x))$ obtained by substituting g into f. It is called the composition (or composite) of f and g and is denoted by $f \circ g$ (read: ' f composed with g ' or ' f after g ')

$$
(f \circ g)(x) \stackrel{\text { def }}{=} f(g(x))
$$

WARNING: $f \circ g \neq g \circ f$.

Machine diagram of $f \circ g$

Arrow diagram of $f \circ g$

Combining Function

Composition of Functions

Example 3:

Let $f(x)=\frac{x}{x+1}$ and $g(x)=2 x-1$.
Find the functions $f \circ g, g \circ f$, and $f \circ f$ and their domains.

$$
f(x)=\frac{x}{x+1} \quad g(x)=2 x-1
$$

(*) $(f \circ g)(x)=f(g(x))=\frac{g(x)}{g(x)+1}=\frac{2 x-1}{(2 x-1)+1}=\frac{2 x-1}{2 x}$

$$
\begin{aligned}
& =1-\frac{1}{2 x} \\
& =g(f(x))=2 f(x)-1=2 \cdot \frac{x}{x+1}-1 \\
& =\frac{2 x}{x+1}-1=\frac{2 x-(x+1)}{x+1}=\frac{x-1}{x+1}
\end{aligned}
$$

$$
\begin{aligned}
(* *)(g \circ f)(x) & =g(f(x))=2 f(x)-1=2 \cdot \frac{x}{x+1}-1 \\
& =\frac{2 x}{x+1}-1=\frac{2 x-(x+1)}{x+1}=\frac{x-1}{x+1}
\end{aligned}
$$

$$
\begin{aligned}
(f \circ f)(x) & =f(f(x))=\frac{f(x)}{f(x)+1}= \\
& =\frac{x / x+1}{x / x+1}+1 \\
& =\frac{\frac{x}{x+1}}{\frac{x+(x+1)}{x+1}}=\frac{x}{x+1} \cdot \frac{x+1}{2 x+1} \\
& =\frac{x}{2 x+1}
\end{aligned}
$$

Example 4:

Express the function $F(x)=\frac{x^{2}}{x^{2}+4}$ in the form $F(x)=f(g(x))$.

$$
F(x)=\frac{x^{2}}{x^{2}+4}
$$

Can be thought of as the following composition

$$
x \stackrel{g}{\longrightarrow} x^{2} \stackrel{f}{\longmapsto} \frac{x^{2}}{x^{2}+4}
$$

Thus: $g(x)=x^{2} ; \quad f(x)=\frac{x}{x+4}$

Definition of a One-One Function

A function f with domain A is called a one-to-one function if no two elements of A have the same image, that is,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } \quad x_{1} \neq x_{2} .
$$

An equivalent way of writing the above condition is:

$$
\text { If } f\left(x_{1}\right)=f\left(x_{2}\right) \text {, then } x_{1}=x_{2} \text {. }
$$

Horizontal Line Test

For functions that can be graphed in the coordinate plane, there is a useful criterion to determine whether a function is one-to-one or not.

Horizontal Line Test

A function is one-to-one
no horizontal line intersects its graph more than once.

$f(x)$ is one-to-one

The Inverse of a Function

One-to-one functions are precisely those for which one can define a (unique) inverse function according to the following definition.

Definition of the Inverse of a Function

Let f be a one-to-one function with domain A and range B. Its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

for any $y \in B$.

If f takes x to y, then f^{-1} takes y back to x.
I.e., f^{-1} undoes what f does.

NOTE:
f^{-1} does NOT mean $\frac{1}{f}$.

Properties of Inverse Functions

Let $f(x)$ be a one-to-one function with domain A and range B. The inverse function $f^{-1}(y)$ satisfies the following "cancellation" properties:

$$
f^{-1}(f(x))=x \text { for every } x \in A
$$

$$
f\left(f^{-1}(y)\right)=y \text { for every } y \in B
$$

Conversely, any function $f^{-1}(y)$ satisfying the above conditions is the inverse of $f(x)$.

Remark:

Typically we write functions in terms of x.
To do this, we need to interchange x and y in $x=f^{-1}(y)$.

Example 5:

Show that the functions $f(x)=x^{5}$ and $g(x)=x^{1 / 5}$ are inverses of each other.

$$
\begin{aligned}
& f(x)=x^{5} g(x)=x^{1 / 5} \\
& (f \circ g)(x)=f(g(x))=[g(x)]^{5}=\left[x^{1 / 5}\right]^{5}=x \\
& (g \circ f)(x)=g(f(x))=[f(x)]^{1 / 5}=\left[x^{5}\right]^{1 / 5}=x
\end{aligned}
$$

Thus: $(f \circ g)(x)=x$
and

$$
(g \circ f)(x)=x
$$

Even and Odd Functions The Algebra of Functions One-One Functions The Inverse of a Function

How to find the Inverse of a One-to-One Function

1. Write $y=f(x)$.
2. Solve this equation for x in terms of y (if possible).
3. Interchange x and y. The resulting equation is $y=f^{-1}(x)$.

Even and Odd Functions The Algebra of Functions

One-One Functions The Inverse of a Function

Deflimition

Properties of linverse Functions
How to find the Inverse of a One-to-One Function Grapt of the Inverse Function

Example 6: (Online Homework HW02, \# 12)

Find the inverse of $y=\frac{2-3 x}{8-7 x}$.

1. $y=\frac{2-3 x}{8-7 x}$
2. Solve for x in terms of y

$$
\begin{aligned}
& y(8-7 x)=2-3 x \longrightarrow 8 y-7 x y=2-3 x \\
& 3 x-7 x y=2-8 y \rightarrow x(3-7 y)=2-8 y \\
& \longrightarrow x=\frac{2-8 y}{3-7 y}
\end{aligned}
$$

3. Interchange x and y

$$
\therefore y=\frac{2-8 x}{3-7 x}
$$

Example 7: (Exam 1, Spring 15, \# 4)

One of the main quantities that epidemiologists try to measure for infectious diseases is the so-called basic reproduction number, R_{0}. Biologically, this is the expected number of new infections that an infected individual will produce when introduced into a completely susceptible population.
We can try to modify this by introducing vaccination to control the probability of an outbreak of the disease. We want to know the fraction of the population that we have to vaccinate to achieve a target outbreak probability. If v is the vaccination fraction, then the outbreak probability as a function of v is

$$
P=1-\frac{1}{R_{0}(1-v)}
$$

Find the inverse of this function to obtain v, the vaccination coverage needed, as a function of P, the given target outbreak probability.

$$
\begin{aligned}
& P=1-\frac{1}{R_{0}(1-v)} \rightarrow \frac{1}{R_{0}(1-v)}=1-P \\
& \longrightarrow \frac{1}{R_{0}(1-P)}=1-v \rightarrow v=1-\frac{1}{R_{0}(1-P)}
\end{aligned}
$$

that is we wrote the vaccination coverage needed v in terns of the target outbreak fubabieity P.
(no need to exchange $v \longleftrightarrow P$)

Graph of the Inverse Function

The principle of interchanging x and y to find the inverse function also gives us a method for obtaining the graph of f^{-1} from the graph of f. The graph of f^{-1} is obtained by reflecting the graph of f in the line $y=x$.
The picture on the right hand side shows the graphs of:

$$
\begin{gathered}
f(x)=\sqrt{x+4} \\
\text { and } \\
f^{-1}(x)=x^{2}-4, x \geq 0
\end{gathered}
$$

Example 8 :

Find the inverse of the function $f(x)=1+\sqrt{1+x}$.
Find the domain and range of f and f^{-1}.
Graph f and f^{-1} on the same cartesian plane.

$$
f(x)=1+\sqrt{1+x}
$$

has domain $\{x \in \mathbb{R} \mid x \geqslant-1\}$ and range $\{y \in \mathbb{R} \mid y \geq 1\}$

the domain of the inverse f^{-1} must be $\{x \in \mathbb{R} \mid x \geqslant 1\}$ and the range numst be $\{y \in \mathbb{R} \mid y \geq-1\}$
graphically

MA137-Calculus 1 with Life Science Applications Exponential and Logarithmic Functions (Sections 1.1 and 1.2)

Alberto Corso

〈alberto.corso@uky.edu〉

Department of Mathematics
University of Kentucky

August 31, 2016

Exponential Functions
Logarithmic Functions Exponential/Logarithmic Equations

Definition and Craph of Exponential Functions The number ' e '
The Natural Exponential Function

Exponential Functions

The exponential function

$$
f(x)=a^{x} \quad(a>0, a \neq 1)
$$

has domain \mathbb{R} and range $(0, \infty)$. The graph of $f(x)$ has one of these shapes:

$$
f(x)=a^{x} \text { for } a>1
$$

$$
\begin{gathered}
f(x)=a^{x} \\
\text { for } 0<a<1
\end{gathered}
$$

Definition and Graph of Exponential Functions The number ' c '
The Natural Exponential Function

Laws of Exponents

Let a and b be real numbers so that $a, b>0$ and $a, b \neq 1$.

- $\quad a^{0}=1$
- $\quad a^{u} a^{v}=a^{u+v}$
- $\frac{a^{u}}{a^{v}}=a^{u-v}$ In particular, $\quad \frac{1}{a^{v}}=\frac{a^{0}}{a^{v}}=a^{0-v}=a^{-v}$
- $\quad\left(a^{u}\right)^{v}=a^{u v}$

In particular, $\quad a^{1 / n}=\sqrt[n]{a}$

- $(a b)^{u}=a^{u} b^{u} \quad\left(\frac{a}{b}\right)^{u}=\frac{a^{u}}{b^{u}}$

Example 1:

Use the graph of $f(x)=3^{x}$ to sketch the graph of each function: $g(x)=-3^{x}$
$h(x)=1-3^{-x}$

Let's constmat the graph of $h(x)=1-3^{-x}$ in steps:

Why are exponential functions of interest?
Suppose that we study a population of 100 individual $l^{\text {in }}$ and suppose that it grows ammaley at a 3% rate. Desaibe the population growth at time t. (You can also consider $\$ 100$ in a bank growing amuelly at a 3%)

$$
\begin{aligned}
& P_{0}=P(0)=100 ; \text { growth rate }=3 \% \text { or } r=0.03 \\
& P(1)=100+\underbrace{0.03 \cdot 100}_{\text {grith }}=100+3=103=\underbrace{100(1.03)} \\
& P(2)=103+\underbrace{0.03 \cdot 103}=103(1+0.03)=100(1.03)(1.03) \\
& \\
& =100(1.03)^{2} \underbrace{0.0 R}_{\text {glow th }}
\end{aligned}
$$ In general $\quad P(t)=100(1.03)^{t} \quad P(t)=P_{0}(1+r)^{t}$

The formula fr compomoled interest is

$$
P(t)=P_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

(see earlier discussion) with $n=1$
where $P_{0}=$ initial principal
$r=$ interest rate per year
$n=$ number of times interest is compounded per year t = number of years.

If n becomes very large (\equiv interest is compomoled continuously) the above forme la becomes

$$
P(t)=P_{0} e^{r t}
$$

The Number ' e '
 (Euler's constant)

The most important base is the number denoted by the letter e.

The number e is defined as the value that $\left(1+\frac{1}{n}\right)^{n}$ approaches as n becomes very large.

Correct to five decimal places (note that e is an irrational number), $e \approx 2.71828$.

n	$\left(1+\frac{1}{n}\right)^{n}$
1	2.00000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827
$1,000,000$	2.71828

The Natural Exponential Function

The Natural Exponential Function

The natural exponential function is the exponential function

$$
f(x)=e^{x}
$$

with base e. It is often referred to as the exponential function.

Note:

Sometimes we write

$$
f(x)=\exp (x)
$$

to denote the exponential function.

Since $2<e<3$, the graph of $y=e^{x}$ lies between the graphs of $y=2^{x}$ and $y=3^{x}$.

Example 2:

When a certain drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after t hours is modeled by

$$
D(t)=50 e^{-0.2 t} .
$$

How many milligrams of the drug remain in the patient's bloodstream after 3 hours?
(*) Notice that $D(0)=50 e^{-0.2 \cdot 0}=50 \underbrace{e^{0}}_{1}$

$$
=50
$$

Thus 50 is the initial amount of dug administered to the patient.
(*)

$$
D(3)=50 e^{-0.2 \cdot 3}=50 e^{-0.6} \cong 27.44 \mathrm{mg}
$$

(**) It would have been more interesting to ask: How long do we need to wait so that the blood stream of the patent only has 25 mg left of dug?

$$
25=D(\bar{t})=50 e^{-0.2 \bar{t}} \Longleftrightarrow \quad \begin{aligned}
& \frac{1}{2}=e^{-0.2 \bar{t}}
\end{aligned}
$$ How do we solve fo \bar{t} ?

Exponential Functions
Logarithmic Functions Exponential/Logarithmic Equations

Logarithmic Functions

Every exponential function $f(x)=a^{x}$, with $0<a \neq 1$, is a one-to-one function (Horizontal Line Test). Thus, it has an inverse function, called the logarithmic function with base a and denoted by $\log _{a} x$.

Definition

Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted by $\log _{a}$, is defined by

$$
y=\log _{a} x \quad \Longleftrightarrow \quad a^{y}=x .
$$

That is, $\log _{a} x$ is the exponent to which a must be raised to give x.

Properties of Logarithms

1. $\log _{a} 1=0$
2. $\log _{a} a=1$
3. $\log _{a} a^{x}=x$
4. $a^{\log _{a} x}=x$

Graphs of Logarithmic Functions

The graph of $f^{-1}(x)=\log _{a} x$ is obtained by reflecting the graph of $f(x)=a^{x}$ in the line $y=x$. Thus, the function $y=\log _{a} x$ is defined for $x>0$ and has range equal to \mathbb{R}.

The point $(1,0)$ is on the graph of $y=\log _{a} x\left(\operatorname{as} \log _{a} 1=0\right)$ and the y-axis is a vertical asymptote.

Natural Logarithms

Of all possible bases a for logarithms, it turns out that the most convenient choice for the purposes of Calculus is the number e.

Definition

The logarithm with base e is called the natural logarithm and denoted:

$$
\ln x:=\log _{e} x
$$

We recall again that, by the definition of inverse functions, we have

$$
y=\ln x \quad \Longleftrightarrow \quad e^{y}=x
$$

Properties of Natural Logarithms

1. $\ln 1=0$
2. $\ln e=1$
3. $\ln e^{x}=x$
4. $e^{\ln x}=x$

Common Logarithms

Another convenient choice of base for the purposes of the Life Sciences is the number 10.

Definition

The logarithm with base 10 is called the common logarithm and denoted:

$$
\log x:=\log _{10} x
$$

We recall again that, by the definition of inverse functions, we have

$$
y=\log x \quad \Longleftrightarrow \quad 10^{y}=x
$$

Properties of Natural Logarithms

1. $\log 1=0$
2. $\log 10=1$
3. $\log 10^{x}=x$
4. $10^{\log x}=x$

Laws of Logarithms

Since logarithms are 'exponents', the Laws of Exponents give rise to the Laws of Logarithms:

Laws of Logarithms

Let a be a positive number, with $a \neq 1$. Let A, B and C be any real numbers with $A>0$ and $B>0$.

1. $\log _{a}(A B)=\log _{a} A+\log _{a} B$;
2. $\log _{a}\left(\frac{A}{B}\right)=\log _{a} A-\log _{a} B$;
3. $\log _{a}\left(A^{C}\right)=C \log _{a} A$.

Proof of Law 1.: $\log _{a}(A B)=\log _{a} A+\log _{a} B$

Let us set

$$
\log _{a} A=u \quad \text { and } \quad \log _{a} B=v .
$$

When written in exponential form, they become

$$
a^{u}=A \quad \text { and } \quad a^{v}=B .
$$

Thus: $\quad \log _{a}(A B)=\log _{a}\left(a^{u} a^{v}\right)$

$$
=\log _{a}\left(a^{u+v}\right)
$$

$$
\stackrel{\text { why? }}{=} u+v
$$

$$
=\log _{a} A+\log _{a} B .
$$

In a similar fashion, one can prove 2. and 3.

Expanding and Combining Logarithmic Expressions

Example 3:

Use the Laws of Logarithms to combine the expression $\log _{a} b+c \log _{a} d-r \log _{a} s-\log _{a} t$
into a single logarithm.

$$
\begin{aligned}
& \log _{a} b+c \log _{a} d-r \log _{a} s-\log _{a} t \\
& =\left[\log _{a} b+\log _{a}\left(d^{c}\right)\right]-\left[\log _{a}\left(s^{r}\right)+\log _{a} t\right] \\
& =\log _{a}\left(b d^{c}\right)-\log _{a}\left(s^{r} t\right) \\
& =\log _{a}\left(\frac{b d^{c}}{s^{r} t}\right)
\end{aligned}
$$

We used proferties 1.-3. of Logaithms.

Exponential Functions
Logarithmic Functions Exponential/Logarithmic Equations

Change of Base

For some purposes, we find it useful to change from logarithms in one base to logarithms in another base. One can prove that:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Proof: Set $y=\log _{b} x$. By definition, this means that $b^{y}=x$. Apply now $\log _{a}(\cdot)$ to $b^{y}=x$. We obtain

$$
\log _{a}\left(b^{y}\right)=\log _{a} x \quad \leadsto \quad y \log _{a} b=\log _{a} x
$$

Thus

$$
\log _{b} x=y=\frac{\log _{a} x}{\log _{a} b}
$$

Example: $\quad \log _{5} 2=\frac{\log 2}{\log 5}=\frac{\ln 2}{\ln 5} \approx 0.43068$.

Exponential Equations

An exponential equation is one in which the variable occurs in the exponent. For example,

$$
3^{x+2}=7 .
$$

We take the (either common or natural) logarithm of each side and then use the Laws of Logarithms to 'bring down the variable' from the exponent:

$$
\begin{aligned}
\log \left(3^{x+2}\right)= & \log 7 \\
\rightsquigarrow & (x+2) \log 3=\log 7 \\
\rightsquigarrow & x+2=\frac{\log 7}{\log 3} \\
\rightsquigarrow & x=\frac{\log 7}{\log 3}-2 \approx-0.228756
\end{aligned}
$$

Example 4: (Online Homework HW03, \# 6)

Solve the given equation for x :

$$
2^{5 x-4}=3^{10 x-10}
$$

$$
2^{5 x-4}=3^{10 x-10}
$$

Take \log of both sides (oR \ln)

$$
\begin{aligned}
& \log \left(2^{5 x-4}\right)=\log \left(3^{10 x-10}\right) \\
\Leftrightarrow & (5 x-4) \log 2=(10 x-10) \log 3 \\
\Leftrightarrow & (5 \log 2) x-4 \log 2=(10 \log 3) x-10 \log 3 \\
\Longleftrightarrow & (10 \log 3) x-(5 \log 2) x=10 \log 3-4 \log 2 \\
\Longleftrightarrow & {[10 \log 3-5 \log 2] x=10 \log 3-4 \log 2 } \\
\Longleftrightarrow & x=\frac{(10 \log 3-4 \log 2)}{(10 \log 3-5 \log 2)}=\frac{\log \left(\frac{3^{10}}{2^{4}}\right)}{\log \left(\frac{3^{10} 5}{2^{5}}\right)} \cong 1.09216
\end{aligned}
$$

Logarithmic Equations

A logarithmic equation is one in which a logarithm of the variable occurs. For example,

$$
\log _{2}(25-x)=3
$$

To solve for x, we write the equation in exponential form, and then solve for the variable:

$$
25-x=2^{3} \rightsquigarrow 25-x=8 \leadsto x=17 .
$$

Alternatively, we raise the base, 2, to each side of the equation; we then use the Laws of Logarithms:

$$
2^{\log _{2}(25-x)}=2^{3} \rightsquigarrow 25-x=2^{3} \rightsquigarrow x=17 .
$$

Example 5: (Online Homework HW03, \# 5)

Solve the given equation for x :

$$
\log _{10} x+\log _{10}(x+21)=2
$$

$$
\begin{aligned}
& \log _{10} x+\log _{10}(x+21)=2 \\
& \Longleftrightarrow \log _{10}[x(x+21)]=2 \\
& \Longleftrightarrow \quad 0^{\log _{10}[x(x+21)]}=10^{2} \\
& \Longleftrightarrow \quad x(x+21)=100 \\
& \Longleftrightarrow \quad x^{2}+21 x-100=0 \\
& \Longleftrightarrow \quad(x+25)(x-4)=0 \\
& \Longleftrightarrow \quad x=-25,4
\end{aligned}
$$

HOWEVER, $\quad \log _{10}(-25)+\log _{10}(-25+21)=2$ does not make any sense! So $x=4$ is the only solution -

MA137-Calculus 1 with Life Science Applications Applications: Exponential Growth and Decay

 (Sections 1.1 and 1.2)
Alberto Corso

〈alberto.corso@uky.edu〉

Department of Mathematics
University of Kentucky
September 2, 2016

Exponential Models of Population Growth

The formula for population growth of several species is the same as that for continuously compounded interest. In fact in both cases the rate of growth r of a population (or an investment) per time period is proportional to the size of the population (or the amount of an investment).

Exponential Growth Model

If n_{0} is the initial size of a population that experiences exponential growth, then the population $n(t)$ at time t increases according to the model

$$
n(t)=n_{0} e^{r t}
$$

where r is the relative rate of growth of the population (expressed as a proportion of the population).

Applications

Remark:

Biologists sometimes express the growth rate in terms of the doubling-time h, the time required for the population to double in size: $r=\frac{\ln 2}{h}$.

Proof: Indeed, from

$$
2 n_{0}=n(h)=n_{0} e^{r h}
$$

we obtain

$$
2=e^{r h} \quad \leadsto \quad \ln 2=r h \quad \leadsto \quad r=\frac{\ln 2}{h}
$$

Using the doubling-time h, we can also rewrite $n(t)$ as:

$$
n(t)=n_{0} e^{r t}=n_{0} e^{\frac{\ln 2}{h} t}=n_{0} e^{(t / h) \cdot \ln 2}=n_{0} e^{\ln \left(2^{t / h}\right)}=n_{0} 2^{t / h}
$$

Radioactive Decay

Radioactive substances decay by spontaneously emitting radiations. Also in this situation, the rate of decay is proportional to the mass of the substance and is independent of environmental conditions. This is analogous to population growth, except that the mass of radioactive material decreases.

Radioactive Decay Model

If m_{0} is the initial mass of a radioactive substance then the mass $m(t)$ remaining at time t is modeled by the function

$$
m(t)=m_{0} e^{-r t}
$$

where r is the relative rate of decay of the radioactive substance.

Remark:

Physicists sometimes express the rate of decay in terms of the
half-life h, the time required for half the mass to decay: $r=\frac{\ln 2}{h}$.

Proof: Indeed, from

$$
\frac{1}{2} m_{0}=m(h)=m_{0} e^{-r h}
$$

we obtain

$$
\frac{1}{2}=e^{-r h} \quad \leadsto \ln \frac{1}{2}=-r h \quad \leadsto \quad-\ln 2=-r h \quad \leadsto \quad r=\frac{\ln 2}{h}
$$

Using the half-time h, we can also rewrite $m(t)$ as:

$$
m(t)=m_{0} e^{-r t}=m_{0} e^{-\frac{\ln 2}{h} t}=m_{0} e^{(-t / h) \cdot \ln 2}=m_{0} e^{\ln \left(2^{-t / h}\right)}=m_{0}\left(\frac{1}{2}\right)^{t / h}
$$

Example 1: (Online Homework HW03, \# 8)

A town has population 750 people at year $t=0$.
Write a formula for the population, P, in year t if the town
(a) Grows by 70 people per year
(b) Grows by 12% per year
(c) Grows at a continuous rate of 12% per year.
(d) Shrinks by 14 people per year.
(e) Shrinks by 4% per year.
(f) Shrinks at a continuous rate of 4% per year.
(a) $P(t)=750+70 t$
(b) $\quad P(t)=750(1+0.12)^{t}=750(1.12)^{t}$
(c) $P(t)=750 e^{0.12 t}$
(d) $\quad P(t)=750-14 t$
(e) $\quad P(t)=750(1-0.04)^{t}=750(0.96)^{t}$
$(f) \quad P(t)=750 e^{-0.04 t}$

Example 2 (Frog Population):

The frog population in a small pond grows exponentially. The current population is 85 frogs, and the relative growth rate is 18% per year.
(a) Which function models the population after t years?
(b) Find the projected frog population after 3 years.
(c) When will the frog population reach 600?
(d) When will the frog population double?
(a) $n(t)=85 e^{0.18 t}$
(b) $n(3)=85 e^{0.18(3)}=85 e^{0.54} \cong 145.86$
(c) We need to find \bar{E} so that

$$
\begin{aligned}
& 85 e^{0.18 \bar{t}}=n(\bar{t})=600 \Longrightarrow e^{0.18 \bar{t}}=\frac{600}{85} \\
\Longrightarrow & \ln e^{0.18 \bar{t}}=\ln \left(\frac{600}{85}\right) \Longrightarrow 0.18 \bar{t}=\ln \left(\frac{600}{85}\right) \\
\therefore & \bar{t}=\frac{\ln \left(\frac{600 / 85)}{0.18} \cong 10.857\right. \text { years }}{}
\end{aligned}
$$

(d) Let h denote the doubling time. That is

$$
\begin{aligned}
& 85 e^{0.18 h}=n(h)=2.85 \\
& \Longrightarrow e^{0.18 h}=2 \Longrightarrow \ln e^{0.18 h}=\ln 2 \\
& \Longrightarrow 0.18 h=\ln 2 \longrightarrow\left(h=\frac{\ln 2}{0.18} \cong 3.85\right)
\end{aligned}
$$

Example 3: (Online Homework HW03, \# 14)

Assume that the number of bacteria follows an exponential growth model: $P(t)=P_{0} e^{k t}$. The count in the bacteria culture was 100 after 15 minutes and 1800 after 35 minutes.
(a) What was the initial size of the culture?
(b) Find the population after 105 minutes.
(c) How many minutes after the start of the experiment will the population reach 14,000 ?
(a) Using air information we have

$$
\begin{aligned}
& P(15)=\frac{P_{0} e^{15 k}=100}{P(35)=P_{0} e^{35 k}=1800}
\end{aligned}
$$

Thus $P_{0}=\frac{100}{e^{15 k}} \quad$ and $\quad P_{0}=\frac{1800}{e^{35 k}}$

$$
\begin{array}{ll}
\Longrightarrow \quad \frac{100}{e^{15 k}}=\frac{1800}{e^{35 k}} & \Longrightarrow 100 e^{35 k}=1800 e^{15 k} \\
\text { OR } \quad \frac{e^{35 k}}{e^{15 k}}=\frac{1800}{100} & \Longrightarrow e^{35 k-15 k}=18
\end{array}
$$

$$
\therefore e^{20 k}=18 \Rightarrow 20 k=\ln 18 \Rightarrow k=\frac{e^{15 k}}{20}
$$

Thus $k=0.144518$
What about P_{0} ? Since $P_{0}=\frac{100}{e^{15 k}}$, example,
we obtain

$$
\begin{aligned}
P_{0} & =\frac{100}{e^{15\left(\frac{\ln 18}{20}\right)}=\frac{100}{3 / 4(\ln 18)}} \\
& =\frac{100}{e^{\ln \left(18^{3 / 4}\right)}=\frac{100}{18^{3 / 4}} \cong 11.4431508}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
P(t) & =\frac{100}{18^{3 / 4}} \cdot e^{\left[\frac{\ln 18}{20}\right] t}=\frac{100}{18^{3 / 4}} e^{[t / 20 \ln 18]}= \\
& =\frac{100}{18^{3 / 4}} \cdot e^{\ln \left(18^{t / 20}\right)}=\frac{100}{18^{3 / 4}} \cdot 18^{t / 20} \\
& =100 \cdot 18^{(t / 20-3 / 4)}=\frac{100 \cdot 18^{\left(\frac{t-15}{20}\right)}}{=100 \cdot 18^{(105-15)} 20}=100 \cdot 18^{4.5} \\
\therefore \quad \underline{P(105)} & =105,537,544.88
\end{aligned} \\
&
\end{aligned}
$$

(c) Finally,

$$
14,000=100 \cdot 18^{\left(\frac{\bar{t}-15}{20}\right)}
$$

$$
\Rightarrow \quad 140=18
$$

$$
\Longrightarrow \quad \ln (140)=\left(\frac{\bar{t}-15}{20}\right) \cdot \ln (18)
$$

$$
\Rightarrow \quad 20 \ln (140)=\bar{t} \cdot \ln (18)-15 \cdot \ln (18)
$$

$$
\cong 49.1938189 \text { mimutes }
$$

Example 4:

The mass $m(t)$ remaining after t days from a $40-\mathrm{g}$ sample of thorium-234 is given by:

$$
m(t)=40 e^{-0.0277 t}
$$

(a) How much of the sample will be left after 60 days?
(b) After how long will only $10-\mathrm{g}$ of the sample remain?
(a) $m(60)=40 e^{-0.0277 .60} \cong 7.59036 \mathrm{mg}$
(b)

$$
10=m(\bar{E})=40 e^{-0.0277 \cdot \bar{E}}
$$

we need to find E

$$
\begin{aligned}
& \Longrightarrow \quad \begin{aligned}
& \frac{1}{4}=e^{-0.0277 \bar{t}} \\
&=-0.0277 \bar{t} \\
&=\ln e^{-0.0277 \bar{t}} \\
&(1 / 4) \\
& \therefore \quad \bar{t}=\frac{\ln (1 / 4)}{-0.0277}=\frac{\ln T^{2}-\ln 4}{-0.0277}=\frac{\ln 4}{0.0277} \\
& \cong 50.046 \text { days }
\end{aligned}
\end{aligned}
$$

From Neuhauser's Textbook, p. 27

[...] Carbon 14 is formed high in the atmosphere. It is radioactive and decays into nitrogen (N^{14}).
There is an equilibrium between atmospheric carbon $12\left(\mathrm{C}^{12}\right)$ and carbon $14\left(\mathrm{C}^{14}\right)$ - a ratio that has been relatively constant over a fairly long period.

When plants capture carbon dioxide $\left(\mathrm{CO}_{2}\right)$ molecules from the atmosphere and build them into a product (such as cellulose), the initial ratio of C^{14} to C^{12} is the same as that in the atmosphere.

Once the plants die, however, their uptake of CO_{2} ceases, and the radioactive decay of C^{14} causes the ratio of C^{14} to C^{12} to decline.

Because the law of radioactive decay is known, the change in ratio provides an accurate measure of the time since the plants death.

Example 5: (Neuhauser, Problem \# 64, p.37)

The half-life of C^{14} is 5730 years. Suppose that wood found at an archeological excavation site contains about 35% as much C^{14} (in relation to C^{12}) as does living plant material.
Determine when the wood was cut.

By a pRevious discussion

$$
m(t)=m_{0}(1 / 2)^{t / 5730}
$$

Hence we are seeking \bar{E} such that

$$
\begin{gathered}
\frac{0.35 m_{0}}{\bar{t} / 5730}=m(\bar{t})=\underline{m_{0}\left(\frac{1}{2}\right)^{\bar{t} / 5730}} \\
\therefore \quad 0.35=\left(\frac{1}{2}\right)^{\overline{(n)}(0.35)=\frac{\bar{t}}{5730} \ln (1 / 2)} \\
\therefore \quad \bar{t}= \\
=\frac{5730 \ln (0.35)}{\ln (1 / 2)}=\frac{5730 \ln (0.35)}{-\ln (2)}= \\
=\frac{5730 \cdot(-1) \ln (0.35)}{\ln (2)}=\frac{5730 \ln \left(\frac{1}{0.35}\right)}{\ln (2)} \cong 8678.50428 \\
\text { years }
\end{gathered}
$$

Newton's Law of Cooling

Newton's Law of Cooling states that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings, provided that the temperature difference is not too large.

Using Calculus, the following model can be deduced from this law:

The Model

If D_{0} is the initial temperature difference between an object and its surroundings, and if its surroundings have temperature T_{S}, then the temperature of the object at time t is modeled by the function

$$
T(t)=T_{S}+D_{0} e^{-k t}
$$

where k is a positive constant that depends on the object.

Example 6 (Cooling Turkey):

A roasted turkey is taken from an oven when its temperature has reached $185^{\circ} \mathrm{F}$ and is placed on a table in a room where the temperature is $75^{\circ} \mathrm{F}$.
(a) If the temperature of the turkey is $150^{\circ} \mathrm{F}$ after half an hour, what is its temperature after 45 minutes?
(b) When will the turkey cool to $100^{\circ} \mathrm{F}$?
(a) $D_{0}=185-75=110$
hence the tampuatum of the turkey is given by

$$
T(t)=75+110 e^{-k t}
$$

So $T(30)=75+110 e^{-30 k}=150$

$$
\begin{aligned}
& \text { So } 1(30)=75+110 e \\
& \Longrightarrow e^{-30 k}=\frac{150-75}{110} \Longrightarrow k=\frac{\ln (75 / 110)}{-30} \\
& \therefore \quad k \cong 0.01276
\end{aligned}
$$

Hence $T(t)=75+110 e^{-0.01276 t}$
(b) Check that $T(E)=100$

$$
\bar{t}=116 \text { minutes (almost } 2 \text { hours) }
$$

Interested in Forensic Pathology?

Newton's Law of Cooling is used in homicide investigations to determine the time of death. Immediately following death, the body begins to cool (its normal temperature is $98.6^{\circ} \mathrm{F}$). It has been experimentally determined that the constant in Newton's Law of Cooling is $k \approx 0.1947$, assuming time is measured in hours.

MA137-Calculus 1 with Life Science Applications Semilog and Double Log Plots

 (Section 1.3)Alberto Corso
〈alberto.corso@uky.edu〉

Department of Mathematics
University of Kentucky

September 7, 2016

Logarithmic Scales

- When a physical quantity varies over a very large range, it is often convenient to take its logarithm in order to have a more manageable set of numbers.
- Quantities that are measured on logarithmic scales include
- acidity of a solution (the pH scale),
- earthquake intensity (Richter scale),
- loudness of sounds (decibel scale),
- light intensity,
- information capacity,
- radiation.
- In such cases, the equidistant marks on a logarithmic scale represent consecutive powers of 10 .

The pH Scale

Chemists measured the acidity of a solution by giving its hydrogen ion concentration until Sorensen, in 1909, defined a more convenient measure:

$$
\mathrm{pH}=-\log \left[H^{+}\right]
$$

where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions measured in moles per liter (M).

Solutions are defined in terms of the pH as follows: those with $\mathrm{pH}=7$ (or $\left.\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{M}\right)$ are neutral, those with $\mathrm{pH}<7$ (or $\left[\mathrm{H}^{+}\right]>10^{-7} \mathrm{M}$) are acidic, those with $\mathrm{pH}>7$ (or $\left.\left[\mathrm{H}^{+}\right]<10^{-7} \mathrm{M}\right)$ are basic.

Example 1 (Finding pH):

The hydrogen ion concentration of a sample of each substance is given. Calculate the pH of the substance.
(a) Lemon juice: $\left[H^{+}\right]=5.0 \times 10^{-3} \mathrm{M}$
(b) Tomato juice: $\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-4} \mathrm{M}$
(c) Seawater: $\left[\mathrm{H}^{+}\right]=5.0 \times 10^{-9} \mathrm{M}$
(a) Lemon juice $\left[\mathrm{H}^{+}\right]=5.0 \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
p H & =-\log \left(5.0 \times 10^{-3}\right)=-\log (5)-\log \left(10^{-3}\right) \\
& =3-\log (5)=2.301
\end{aligned}
$$

(b) Tomato juice $\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-4} \mathrm{M}$

$$
\begin{aligned}
p H & =-\log \left(3.2 \times 10^{-4}\right)=-\log (3.2)-\log \left(10^{-4}\right) \\
& =4-\log (3.2)=3.49485
\end{aligned}
$$

(c) Seawater $\left[\mathrm{H}^{+}\right]=5.0 \times 10^{-9} \mathrm{M}$

$$
\begin{aligned}
p H & =-\log \left(5.0 \times 10^{-9}\right)=-\log (5)-\log \left(10^{-9}\right) \\
& =9-\log (5)=8.301
\end{aligned}
$$

Example 2 (Ion Concentration):

Calculate the hydrogen ion concentration of each substance from its pH reading.
(a) Vinegar: $\mathrm{pH}=3.0$
(b) Milk: $\mathrm{pH}=6.5$
(a) Vinegar: $p H=3.0$

$$
\begin{aligned}
& \Longrightarrow 3 \cdot 0=-\log \left[\mathrm{H}^{+}\right] \quad \Longrightarrow \quad \log \left[\mathrm{H}^{+}\right]=-3 \\
& \Longrightarrow\left[\mathrm{H}^{+}\right]=10^{-3}
\end{aligned}
$$

(b) Milk: $\quad \mathrm{pH}=6.5$

$$
\begin{gathered}
\Rightarrow \quad 6.5=-\log \left[\mathrm{H}^{+}\right] \Longrightarrow \log \left[\mathrm{H}^{+}\right]=-6.5 \\
\Rightarrow \quad\left[\mathrm{H}^{+}\right]=10^{-6.5}=10^{0.5} \cdot 10^{-0.5} \cdot 10^{-6.5} \\
\Rightarrow
\end{gathered}
$$

$$
=3.2 \times 10^{-7}
$$

Semilog Plots

- In biology its common to use a semilog plot to see whether data points are appropriately modeled by an exponential function.
- This means that instead of plotting the points (x, y), we plot the points $(x, \log y)$.
- In other words, we use a logarithmic scale on the vertical axis.

Graphs for a Science article

B

Fig. 1. (A) Plasma concentrations (copies per milililiter) of HIV-1 RNA (circles) for two representative patients (upper panel, patient 104; lower panel, patient 107) after ritonavir treatment was begun on day 0 . The theoretical curve (solid line) was obtained by nonlinear least squares fitting of Eq. 6 to the data. The parameters c (virion clearance rate), δ (rate of loss of infected cells), and V_{0} (initial viral load) were simultaneously estimated. To account for the pharmacokinetic delay, we assumed $t=0$ in Eq. 6 to correspond to the time of the pharmacokinetic delay (if measured) or selected 2,4 , or 6 hours as the best-fit value (see Table 1). The logarithm of the experimental data was fitted to the logarithm of Eq. 6 by a nonlinear least squares method with the use of the subroutine DNLSt from the Common Los Alamos Software Library, which is based on a finite difference Levenberg-Marquardt algorithm. The best fit, with the smallest sum of squares per data point, was chosen after eliminating the worst outlying data point for each patient with the use of the jackknife method. (B) Plasma concentrations of HIV-1 RNA (upper panel; circles) and the plasma infectivity titer (lower panel; squares) for patient 105. (Top panel) The solid curve is the best fit of Eq. 6 to the RNA data; the dotted line is the curve of the noninfectious pool of virions, $V_{\text {N }}(t)$; and the dashed line is the curve of the infectious pool of virions, $V_{1}(t)$. (Bottom panel) The dashed line is the best fit of the equation for $V_{1}(t)$ to the plasma infectivity data. $\mathrm{TCID}_{50}, 50 \%$ tissue culture infectious dose.

How to Read a Semilog Plot

You need remember is that the log axis runs in exponential cycles.
Each cycle runs linearly in 10's but the increase from one cycle to another is an increase by a factor of 10.
So within a cycle you would have a series of: $1,2,3,4,5,6,7,8,9,10$ (this could also be 0.1-1, etc.).
The next cycle begins with 10 and progresses as $20,30,40,50,60,70,80,90,100$.
The cycle after that would be 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.
Below is a picture of semilog graph paper.

Number	\log
100	2
90	1.9542
80	1.9031
70	1.8451
60	1.7782
50	1.6990
40	1.6021
30	1.4771
20	1.3010
10	1
9	0.9542
8	0.9031
7	0.8451
6	0.7782
5	0.6990
4	0.6021
3	0.4771
2	0.3010
1	0.0000

Example 3:

Suppose that x and y are related by the expression

$$
\left.y=4 \cdot 10^{-x / 2}{ }_{\left[=4 \cdot\left(10^{-1 / 2}\right)^{x}\right.}=4 \cdot(0.316)^{x}\right] .
$$

Use a logarithmic transformation to find a linear relationship between the given quantities and graph the resulting linear relationship in the semilog (or log-linear) plot.

Let's plot a few values of
that function - the table we can build the table

x	
-2	$4 \cdot 10^{-(-2 / 2)}=4 \cdot 10=40$
-1	$4 \cdot 10^{-(-1 / 2)}=12.65$
0	4
1	1.265
2	0.4

From $\quad y=4 \cdot 10^{-x / 2}$
take $\log =\log _{10}$ of both sides:

$$
\begin{aligned}
\log y & =\log \left(4 \cdot 10^{-x / 2}\right) \\
& =\log (4)+\log \left(10^{-x / 2}\right) \\
& 1 \\
& =\log (4)+(-1 / 2) \cdot x
\end{aligned}
$$

Set $Y=\log y$, so the above equation becomes

$$
\begin{aligned}
& Y=(-1 / 2) \cdot x+\log _{\uparrow}(4) \\
& \text { at }(\log 4) \\
& \text { when the } \\
& \text { intucupt isplotted }
\end{aligned}
$$

Lines in Semilog Plots

- If we start with an exponential function of the form $y=a \cdot b^{x}$ and take logarithms of both sides, we get

$$
\begin{gathered}
\log y=\log \left(a \cdot b^{x}\right)=\log a+\log b^{x} \\
\log y=\log a+x \log b
\end{gathered}
$$

If we let $Y=\log y, M=\log b$, and $B=\log a$, then we obtain

$$
Y=B+M x,
$$

i.e., the equation of a line with slope M and Y-intercept B.

- So if we obtain experimental data that we suspect might possibly be exponential, then we could graph a semilog scatter plot and see if it is approximately linear.

Conversely, suppose we have a straight line in a seunilog plot:

$$
Y=M x+B \quad \text { where } Y=\log y
$$

There from $\log y=M x+B$ we obtain

$$
\begin{aligned}
10^{\log y} & =10^{M x+B} \\
& \Longleftrightarrow \\
y= & \Longleftrightarrow 10^{M x} \cdot 10^{B} \\
& \Longleftrightarrow \\
y= & \underbrace{\left(10^{B}\right)}_{a} \cdot \underbrace{\left(10^{M}\right)^{x}}_{b}=\underbrace{a \cdot b^{x}}_{1 B^{B}}
\end{aligned}
$$

where $a=10^{B} \quad b=10^{M}$

Example 4:

When $\log y$ is graphed as a function of x, a straight line results. Graph the straight line given by the following two points

$$
\left(x_{1}, y_{1}\right)=(0,40) \quad\left(x_{2}, y_{2}\right)=(2,600)
$$

on a log-linear plot. Determine the functional relationship between x and y. (Note: The original $x-y$ coordinates are given.)

First method: a lime in a semilog plot corresponds to an exponential function of the forme $y=a \cdot b^{x}$ when $x=0$ then $y=40$

$$
x=2 \text { then } y=600
$$

$$
\Longrightarrow\left\{\begin{array}{l}
40=a \cdot \tilde{b}^{0} \\
600=a \cdot b^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \therefore a=40 \text { and } 600=40 . b^{2} \Longrightarrow b^{2}=\frac{600}{40}=15 \\
& \therefore b=\sqrt{15} \cong 3.873 \quad \therefore y=40 \cdot(3.873)^{x}
\end{aligned}
$$

Second method: in the $(x, \log y)$ plot we need to compute the equation of the lime though (0, $\log 40)$ and $(2, \log 600)$
slope of the lime is $m=\frac{\log 600-\log 40}{2-0}$

$$
=\frac{\log \left(\frac{600}{40}\right)}{2}=\frac{1}{2} \log (15)=\frac{2-0}{\log (\sqrt{15})}
$$

Hence the point-slape form of the line is

$$
(\underbrace{Y}_{\log y}-\log 40)=\log (\sqrt{15}) \cdot(x-0)
$$

$$
\therefore \quad \log \left(\frac{y}{40}\right)=\log (\sqrt{15}) \cdot x
$$

OR

$$
\begin{aligned}
\log (y / 40) & =x \log (\sqrt{15}) \\
& 1 \\
& =\log \left((\sqrt{15})^{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y}{40}=(\sqrt{15})^{x} \\
& O R \\
& y=40(3.873)^{x}
\end{aligned}
$$

Example 5: (Problem \# 46, Section 1.3, p. 53)

When $\log y$ is graphed as a function of x, a straight line results. Graph the straight line given by the following two points

$$
\left(x_{1}, y_{1}\right)=(1,4) \quad\left(x_{2}, y_{2}\right)=(6,1)
$$

on a log-linear plot. Determine the functional relationship between x and y. (Note: The original $x-y$ coordinates are given.)

First method: since we obtain a straight lime in a semilog plot, the functional relation between x and y is exponential: $y=a \cdot b^{t}$
Hence

$$
\left.\begin{array}{l}
x_{1}=1 \Rightarrow y_{1}=4 \\
x_{2}=6 \Rightarrow y_{2}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
4=a \cdot b^{1} \\
1=a \cdot b^{6}
\end{array}\right]
$$

Solve in both ep. for a : $\frac{4}{b}=a=\frac{1}{b^{6}}$

$$
\begin{aligned}
& \therefore \begin{aligned}
\frac{4}{b} & =\frac{1}{b^{6}} \Longrightarrow \frac{b^{6}}{b}=1 / 4 \\
\therefore b & =\sqrt{1 / 4} \cong 0.7578 \quad \text { Now } a
\end{aligned} \begin{aligned}
& =\frac{4}{b}=\frac{4}{0.7578} \\
& \cong 5.278
\end{aligned} \\
&
\end{aligned}
$$

$$
\therefore \quad y=5.278(0.7578)^{x}
$$

Let's $\frac{2^{\text {nd }} \text { method }}{\text { compute the equation of the line in the }}$ seninlog plot though $(1, \log 4)$ and $(6, \log 1)$

$$
\begin{aligned}
m & =\frac{\log 1-\log 4}{6-1}=\frac{-\log 4}{5}=(-1 / 5) \log 4=\log \left(4^{-\frac{1}{5}}\right) \\
& =\log \left(\frac{1}{\sqrt[5]{4}}\right)
\end{aligned}
$$

Hence $\underbrace{Y}_{\log y}-\log 1=\log \left(\frac{1}{\sqrt[5]{4}}\right)(x-6)$
point-slope form

$$
\begin{aligned}
\Rightarrow \log y & =(x-6) \log \left(\frac{1}{\sqrt[5]{4}}\right) \\
\log y=\log \left[\left(\frac{1}{\sqrt[5]{4}}\right)^{x-6}\right]>y & =\left(\frac{1}{\sqrt[5]{4}}\right)^{x-6} \\
y & =\left(\frac{1}{\sqrt[5]{4}}\right)^{x} \cdot(4)^{6 / 5} \\
& =5.278(0.7578)^{x}
\end{aligned}
$$

Hen is the plot. of $y=5.278(0.7578)^{x}$

Example 6: (Problem \# 52, Section 1.3, p. 53)

Consider the relationship $y=6 \times 2^{-0.9 x}$ between the quantities x and y. Use a logarithmic transformation to find a linear relationship of the form

$$
Y=m x+b
$$

between the given quantities.

$$
y=6 \cdot 2^{-0.9 x}
$$

Take $\log =\log _{10}$ of both sides:

$$
\begin{aligned}
\log y & =\log \left(6.2^{-0.9 x}\right) \\
& \mid \log 6+\log \left(2^{-0.9 x}\right) \\
& \mid[(-0.9) \log 2] x+\log 6 \\
& \mid \\
\log _{11} y & =-0.27092 x+0.7782
\end{aligned}
$$

approx. groph of $y=6 \cdot 2^{-0,9 x}$ in semilog plat

MA137 - Calculus 1 with Life Science Applications Semilog and Double Log Plots (Section 1.3)

Alberto Corso

〈alberto.corso@uky.edu〉

Department of Mathematics
University of Kentucky
September 9, 2016

Double-log (or Log-Log) Plots

- If we use logarithmic scales on both the horizontal and vertical axes, the resulting graph is called a log-log plot.

Lines in Double-Log Plots

- A log-log plot is used when we suspect that a power function might be a good model for our data.
- Recall that power functions are frequently found in "scaling relations" between biological variables (e.g., organ sizes). Finding such relationships is the objective of allometry.
- If we start with a power function $y=C x^{p}$ and take logarithms of both sides, we get

$$
\begin{gathered}
\log y=\log \left(C x^{p}\right)=\log C+\log x^{p} \\
\log y=\log C+p \log x
\end{gathered}
$$

Let $Y=\log y, A=\log C$, and $X=\log x$. Then the latter equation becomes

$$
Y=A+p X
$$

We recognize that Y is a linear function of X, so the points $(\log x, \log y)$ lie on a straight line.

Conversely, suppose we have a straight line in a $\log -\log p l o t$:

$$
Y=p X+B
$$

when

$$
\begin{aligned}
& Y=\log y \\
& X=\log x
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\log y & =p \log x+B \\
& \Longleftrightarrow \\
\log y & =\log \left(x^{p}\right)+\log \left(10^{B}\right) \quad \text { trick! } \\
& \Longleftrightarrow \quad \operatorname{set} C=10^{B} . \\
\log y & =\log \left(10^{B} \cdot x^{p}\right) \quad \leftrightarrow \operatorname{toget} y=C x^{p} \\
& \Longleftrightarrow y=10^{B} \cdot x^{p}
\end{aligned}
$$

Example 1: (Problem \# 58, Section 1.3, p. 53)

When $\log y$ is graphed as a function of $\log x$, a straight line results. Graph the straight line given by the following two points

$$
\left(x_{1}, y_{1}\right)=(2,5) \quad\left(x_{2}, y_{2}\right)=(5,2)
$$

on a log-log plot. determine the functional relationship between x and y. (Note: The original $x-y$ coordinates are given.)
$1^{\text {st }}$ method:
A line in a log-logplot corresponds to a power relation of the form: $y=C x^{p}$.
Since $(2,5)$ and $(5,2)$ satisfy this ulation we obtain:

$$
5=C 2^{p} \quad \text { and } \quad 2=C 5^{p}
$$

Thus $\frac{5}{2^{p}}=C=\frac{2}{5^{p}}$. This imple

$$
\frac{5^{p}}{2^{p}}=2 / 5 \quad \text { or } \quad\left(\frac{5}{2}\right)^{p}=2 / 5
$$

Take \log of both sides and we get

$$
\begin{aligned}
& \text { Take } \log \text { of both sides and we gel } \\
& \log \left[\left(\frac{5}{2}\right)^{p}\right]=\log (2 / 5) \sim p \log (2.5)=\log (0.4) \\
& \Rightarrow p=\frac{\log (0.4)}{\log (2.5)}=-1 \quad \Rightarrow C=\frac{5}{2^{(-1)}}=10
\end{aligned}
$$

Thus the functional relationship is $y=\frac{10}{x}$ $2^{\text {nd }}$ method:

$$
m=\text { slope }=\frac{\log 5-\log 2}{\log 2-\log 5}=\frac{\log (5 / 2)}{\log (2 / 5)}=-1
$$

Hence the equation in point slope form is:

$$
\begin{aligned}
& (\frac{\log y-\log 2)}{} \quad \underline{\ln }(\underbrace{\log x}_{\underline{X}}-\log 5) \\
\Rightarrow & \log \left(\frac{y}{2}\right)=-\left(\log \left(\frac{x}{5}\right)\right) \\
\Rightarrow & \log \left(\frac{y}{2}\right)=\log \left[\left(\frac{x}{5}\right)^{-1}\right]=\log \left(\frac{5}{x}\right) \\
\Rightarrow & \frac{y}{2}=\frac{5}{x} \Longrightarrow y-\frac{10}{x}
\end{aligned}
$$

Example 2: (Exam 1, Fall 13, \# 4)

There are several possible functional relationships between height and diameter of a tree. One particularly simple model is given by

$$
H=A D^{3 / 4}
$$

where A is a constant that depends on the species of tree, H is the height, and D is the diameter. If $A=50$ plot this relationship in the double log plot below.

Is your graph a straight line? If so, what is its slope?

Consider the function $H=50 D^{3 / 4}$
we can construct the following table of values

D	$H=50 D^{3 / 4}$
1	50
10	281.17
10^{2}	$1,581.14$
10^{3}	$8,891.4$
10^{4}	$50,000=5 \cdot 10^{4}$

$$
\left\{\begin{array}{c}
\text { In a log -log plot } \\
\text { this power velationslig } \\
\text { be comes a rtwaight } \\
\text { line: } \\
\log H=\log \left(50 D^{3 / 4}\right) \\
\Longleftrightarrow \log H=\log 50+\log \left(D^{3 / 4}\right) \\
\Longleftrightarrow \\
\log (H)=3 / 4 \log (D)+\log (50)
\end{array}\right.
$$

slope is $3 / 4$

Example 3: (Problem \# 74, Section 1.3, p. 54)

The following table is based on a functional relationship between x and y that is either an exponential or a power function:

x	y
0.5	7.81
1	3.4
1.5	2.09
2	1.48
2.5	1.13

Use an appropriate logarithmic transformation and a graph to decide whether the table comes from a power function or an exponential function, and find the functional relationship between x and y.

Fins, let's see if then is an exponential relationship among om data points. This means that in the semi log plot we have a straight line.

	x	y
$\rightarrow 0.5$	7.81	0.893
	1	3.4
\longrightarrow	0.5	0.531
	2.09	0.32
	1.48	0.17
	1.73	0.053

Let's compute th slope of the lime between two pairs of points of th form $(x, \log y)$

$$
\begin{aligned}
& \rightarrow(0.5,0.893) \&(1.5,0.32) \rightarrow \text { slope } m=\frac{0.32-0.893}{1} \cong-0.573 \\
& \rightarrow(1.5,0.32) \&(2.5,0.053) \rightarrow \text { slope } m=\frac{0.053-0.32}{1} \cong-0.267
\end{aligned}
$$

Since we do not get simile values, these points do not lie on a straight lime.

Let's see if the points of the form $(\log x, \log y)$ lie on a straight lime in a \log - \log plot:

$\log x$	$\log y$
-0.301	0.893
0	0.531
0.176	0.32
0.301	0.17
0.398	0.053

$$
\begin{aligned}
& \text { Pick: }(-0.301,0.893) \&(0.176,0.32) \\
& \text { slope }=\frac{0.32-0.893}{0.176-(-0.301)} \cong-1.201 \\
& \text { Pick }(0,0.531 \&(0.398,0.053) \\
& \text { slope }=\frac{0.053-0.531}{0.398-0} \cong-1.201
\end{aligned}
$$

it seems that we can choose as a slope -1.20
The equation of the lime in point slope form is (we choose the simplest point ($0,0.531$)

$$
(\log y-0.531)=-1.2(\log x-0)
$$

$$
\begin{gathered}
\log y-\log 10^{0.531}=-1.2 \log x \\
\Longleftrightarrow \log \left(\frac{y}{10^{0.531}}\right)=\log x^{-1.2} \Leftrightarrow \frac{y}{10^{0.531}}=x^{-1.2} \\
\therefore y=10^{0.531} x^{-1.2} \quad \text { OR } y=\frac{3.4}{x^{1.2}} \quad h
\end{gathered}
$$

Example 4 (Forgetting):

Ebbinghaus's Law of Forgetting states that if a task is learned at a performance level P_{0}, then after a time interval t the performance level P satisfies

$$
\log P=\log P_{0}-c \log (t+1)
$$

where c is a constant that depends on the type of task and t is measured in months.
(a) Solve the equation for P.
(b) Use Ebbinghaus's Law of Forgetting to estimate a student's score on a biology test two years after he got a score of 80 on a test covering the same material. Assume $c=0.3$.
(a) $\quad \log P=\log P_{0}-c \log (t+1)$

We want to solve for P :

$$
\begin{aligned}
\log P & =\log P_{0}-\log \left[(t+1)^{c}\right] \\
& \Longleftrightarrow \\
\log P & =\log \left[\frac{P_{0}}{(t+1)^{c}}\right]_{P_{0}}
\end{aligned}
$$

Hence $10^{\log P}=10^{\log \left[\frac{P_{0}}{(t+1)^{c}}\right]}$

$$
\Rightarrow \quad P(t)=\frac{P_{0}}{(t+1)^{c}} \ln
$$

(b) With on data $P_{0}=80 \quad c=0.3$

$$
P(t)=\frac{80}{(t+1)^{0.3}} \quad \text { hence } \quad P(\underbrace{24})=\frac{80}{(24+1)^{0.3}} \cong 30.46
$$

Comment (about Example 4)

Below is the graph of the function $P=80 /(t+1)^{0.3}$ in standard coordinates:

t	$P=80 /(t+1)^{0.3}$
0	80
6	44.62
12	37.06
18	33.072
24	30.458

Comment (cont.d)

Below is the graph of $\log P=\log 80-0.3 \log (t+1)$ in a $\log -\log$ plot:

t	$\log (t+1)$	$\log P=\log 80-0.3 \log (t+1)$
0	0	1.903
6	0.845	1.650
12	1.114	1.569
18	1.279	1.519
24	1.398	1.484

Example 5 (Biodiversity):

Some biologists model the number of species S in a fixed area A (such as an island) by the Species-Area relationship

$$
\log S=\log c+k \log A,
$$

where c and k are positive constants that depend on the type of species and habitat.
(a) Solve the equation for S.
(b) Use part (a) to show that if $k=3$ then doubling the area increases the number of species eightfold.
(a) $\log S=\log c+k \log A$

$$
\begin{aligned}
& \log S \Longleftrightarrow \log c+\log \left[A^{k}\right] \\
& \Longleftrightarrow \\
& \log S=\log \left[c A^{k}\right] \\
& \Leftrightarrow 10^{\log S}=10^{\log \left[c A^{k}\right]} \Leftrightarrow S=c A^{k}
\end{aligned}
$$

(b) Suppose $k=3$, i.e. $S=C A^{3}$

For $A=a_{0}$ we get that $s\left(a_{0}\right)=c a_{0}{ }^{3}$.
However if we double the area, i.e. $A=2 a_{0}$, we get $S\left(2 a_{0}\right)=c\left(2 a_{0}\right)^{3}=8$ ca $_{0}^{3}=8 S\left(a_{0}\right)$
i.e. doubling the area increases the number of species eightfold.

