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Discrete-Time Models

So far we have studied real valued functions whose domain consists
of the real numbers, say:

f:R— R.
For example, consider the function
- f(t)=3-2%
The graph of f looks like:

4

0 t

More generally, we have considered functions of the form
P(t) = Po(l + I’)t.

where r is a positive real number (r = growth rate).
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Models

/

to the nonnegative integers N = {0,1,2,3,...} 48
f:N—R, n— f(n).

For example, f(n)=3-2" with neN.

A table is a useful tool to illustrate this function

1 2 3 4
6 12 24 48

n 0
3-271 3

24
The graph is useful too! |

Because the domain consists of nonnegative integers,
the graph consists of isolated points with coordinates 19

(0,£(0)) (1,f(1)) (2,£(2)) (3,7(3) (47(4)) i

Note: we should not have connected the isolated points
with the dotted curve. Please disregard it!!

Sometimes it makes sense to change the domain of the function
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Discrete-Time Models

We refer to this list as a sequence.
We write {f, |n € N} (or {f,} for short) to denote the entire sequence.

We list the values of the sequence {f,} in order of increasing n

fO) fla f27 f39

Remark: Instead of ‘f’ we often use the letters ‘a’ or 'b" or ‘¢’

to denote sequences.
n _ (=)

b, =
n+1 (n+1)?
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Discrete-Time Models

Find a general formula for the general term a, for each of the
following sequences starting with ag:

(a) 0,1,4,9,16,25,36,49, . ..

(b) 1,-1,1,-1,1,-1,...

@1 11 11 1
» 2747 87167 327

Repeat this problem starting this time with a;.

http://www.ms.uky.edu/"mal37










Discrete-Time Models

Consider the sequence given by

an—2+( L) n>1.

List the first six terms of the sequence and plot them on the
Cartesian plane.







|
Discrete-Time Models

The exponential growth model we considered earlier
P,=32"
is an example of a sequence. Explicitly, we have
Po=3, P1=6 P,=12, P3=24, P4 =48,

It is not difficult to observe that this sequence of numbers
describes quantities that double after each unit of time.
More explicitly, we can write

P1 = 2P, P, =2P1, P3=2P,, P4s=2P;3,
We can summarize the above facts into a single expression. l.e.,
Pn—%«l — 2Pn

this expression gives a rule that is applied repeatedly to go from
one time step (the nth) to the next one (the (n 4 1)st).

Such an expression is called a recursion.
http://www“ms-Uky-edu/Nma]_37 e
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Discrete-Time Models

(a) List the first five terms of the recursively define sequence
| ap=1 app1= (n + 1)an.

Do you see something familiar?

(b) List the first five terms of the recursively define sequence

1
a1 =1 and an+1:1+;——.

Do you see something familiar?

Caution: While it is easy to compute terms in a recursive relation, there are 2 issues:
@ In order to find ajgg, we have to compute the previous 99 terms.

@ We may not get a feeling for what will eventually happen.
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Discrete-Time Models

(a) Find a recursive definition for the sequence
0,11,13,15,17,... Assume the first term in the sequence is

indexed by n = 1.

(b) Find a closed formula for the sequence 9,11,13,15,17,...
Assume the first term in the sequence is indexed by n = 1.
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Discrete-Time Models

We gave two descriptions of sequences: explicit and recursive.

An explicit description is of the form a, = f(n),

n=20,1,2,... where f(n) is a function of n.
@ A recursive description is of the form a,11 = g(an),
n=0,1,2,... where g(a,) is a function of a,.
Remark 1:

In the above situation the value of a,1 depends only on the value
one time step back, namely, a,. In this case the recursion is called
a first-order recursion .

Remark 2:
The sequence defined by

ag=1 a1=1, apio=an+ap1 for n=0,1,2,...

is an example of a second-order recursion.
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Discrete-Time Models

Recursive sequences (or difference equations) are often used in
biology to model, for example, cell division and insect populations.

In this biological context we usually replace n by t, to denote time.

If we think of t as the current time, then t + 1 is one unit of time
into the future. We also use N; to denote the population size.

Thus a first-order difference equation modeling population size has

the form
Nt_|_1:f(Nt) t:O,1,273,.‘..

In this context we call f an updating function because f
‘updates’ the population from N; to Nyyq.
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i
Discrete-Time Mode

One of our earlier examples can be rewritten as
Nt_|_1 = 2Nt NO =3 or Nt =3 2t.

This example is a special case of the so called Malthusian
Growth Model, named after Thomas Malthus (1766-1834):

Nt+1 — (]. -+ I’)Nt

which says that the next generation is proportional to the
population of the current generation.

It is typical to set R = 1 + r so that the recursion becomes
Nii1 = RN:.

This recursion has the following explicit form
N, = NgR*.

Hence the name of Exponential Growth Model.
http://www.ms.uky.edu/"mal37




Discrete-Time Models

(a) A population of herbivores satisfies the growth equation
Vne1 = 1.05y,, where n is in years. If the initial population is
yo = 6,000, then determine the explicit expression of the
population.

(b) A competing group of herbivores satisfies the growth equation
Zpr1 = 1.06y, If the initial population is zg = 3,200, then
determine how long it takes for this population to double.

(c) Find when the two populations are equal.

http://www.ms.uky.edu/“mal37
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Discrete-Time Models

We can visualize recursions by plotting N; on
the horizontal axis and N;11 on the vertical axis.
Since N; > 0 for biological reasons, we restrict

the graph to the first quadrant. Neiq]
_ _ slope R
The exponential growth recursion

/Vt+1 = RN;

is then a straight line through

the origin with slope R.
li.e., Nep1 = F(Ny), where f(x) = Rx]

N,
For any current population size N¢, the graph allows us to find the
population size in the next time step, namely, N¢11.

Unless we label the points according to the corresponding t-value,
we would not be able to tell at what time a point (N, Ny11) was
realized. We say that time is implicit in this graph.

http://www.ms.uky.edu/"mal37
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Discrete-Time Models

The hallmark of exponential growth is that the ratio of successive
population sizes, N;/N;.1, is constant. More precisely, it follows
from Nii1 = RN; that

N 1

Nt_|_1 i R

1If the population consists of annual plants, we can interpret the
ratio N/ Niy1 as the parent-offspring ratio.

If this ratio is constant, parents produce the same number of
offspring, regardless of the current population density. Such growth
is called density independent.

When R > 1, the parent-offspring ratio, is less than 1, implying
that the number of offspring exceeds the number of parents. This
model yields then an ever-increasing population size. It eventually
becomes biologically unrealistic, since any population will sooner
or later experience food or habitat limitations that will limit its

growth.
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Discrete-Time Models

Below is the graph of the parent-offspring ratio N;/N¢;1 as a
function of Ny when N; > 0.

Nt/Nt+1/

1/R
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Limits of Sequences

When studying populations over time, we are often interested in
their long-term behavior.

Specifically, if N; is the population size at time ¢, t =0,1,2,.. .,
we want to know how N; behaves as t increases, or, more precisely,
as t tends to infinity.

Using our general setup and notation, we want to know the
behavior of a, as n tends to infinity and use the shorthand notation

lim a,
00

which we read as ‘the limit of a, as n tends to infinity.’
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Limits of Sequences

thezllmylt as n tends to mflmty of a sequence a5

"’f*wntten as Ilm an-—-- L |f we can make the terms a,,

gyfv.any glven any number d > O there |s an mteger N so that

If the limit exists, the sequence converges (or is convergent).

Otherwise we say that the sequence diverges (or is divergent).
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Limits of Sequences

Let a, = forn=1,2,3,....

n
_ 1
Show that Iim — =20

n—-—o0 n
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Limits of Sequeﬁces

let a,=(-1)" forn=0,1,2,....

Show that  lim (—1)" does not exist.
n—>-oo

What about the limit of the sequence b, = cos(mn) 7
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Limits of Sequences

The operations of arithmetic, namely, addition, subtraction,
multiplication, and division, all behave reasonably with respect to
the idea of getting closer to as long as nothing illegal happens.

This is summarized by the followmg laws:

o I|m an d llm b eX|st and C |Saconstantthen I

'hm (a,,+b ) fi( lim an)+( hm b)

n-—~—>oo

e

o (an§’ f)f( "m a”)( fim_ b)

;L;fin——>oo e

an n———>oo
| n—lﬂ]oo b Ilm b provndgd nﬂToo b# O
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Limits of Sequences

1 a2
Find  lim "2 =37),
n—oo pn° 41

. ) n
Find nll—n>]oo n—2:"|_—1
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Limits of Sequences

For R > 0, we know that exponential growth is given by
Nt:NQRn n:O,l,Q,...
The figure below indicates that A

(0 fO< R<1 Ny
im N =< N fR=1

e o fR>1 .

\

=
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Limits of Sequences

.\..4n
Find lim 3 +1

n—->00 4n
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Limits of Sequences

Sometimes the limit of a sequence can be difficult to calculate and
we need to employ some other techniques. One of those techniques
is to use the Squeeze (Sandwich) Theorem for Sequences.
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Limits of Sequences

. . a
The values in the following table "

and the graph on the left

1/n] 1/2"

1 0.5

0.5 0.25 n
0.16 0.125

0.0416 0.0625
0.0083 0.03125
0.00138 | 0.015625
0.000198 | 0.0078125

~N O O1 B W DN Y3

I
of
I
l
!

!
o

suggest that for n > 4 we have
: So by the Squeeze Theorem it follows that
-1  (=1)" 1

n — On — 1
2 T2 lim (~1)"= =0.
n:

n—-—; 00
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Limits of Sequences

Find  fim 21t (D)

n—,oo n
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Limits of Sequences

Ton ﬁ
Find lim —

n—soo nl

http://www.ms.uky.edu/"mal37




— T
5 . 5:5.6----5 &
O ﬁ ﬂ‘, - L (“-\>Ln_z> .. .2 0

s 5.5 . 5\.52 2 =
?. n-1 h-2 @ S L{L 3
N Ty
< <E>n._5~ C2s
=~ C S
“ - 0
S
Jn o ofar we ds O < %.\_. 2 ,:>
s \"7 o
E\Aﬁc %—\;\AO n— 09 © 2l
%O QA‘W -—: % @ %<\




Alberto Corso
(alberto.corso@uky.edu)

Department of Mathematics
University of Kentucky

September 16, 2016

http://www.ms.uky.edu/"mal37

T T T T T T R T T R T A T T I T A T TR AT I T I S T N R T T I T T R T T



Limits of Sequence

We now discuss how to find the limit when a, is defined by a
recursive sequence of the first order

ant1 = f(an)

Finding an explicit expression for a, is often not a feasible strategy,
because solving recursions can be very difficult or even impossible.

How, then, can we say anything about the limiting behavior of a
recursively defined sequence?

The following procedure will allow us to identify candidates for
limits.
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Limits of Séquences

Remark:
A fixed point is only a candidate for a limit; a sequence does not

have to converge to a given fixed point (unless ag is already equal

to the fixed point).
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Limits of Sequences

1 . . . .
Let a,+1 =1+ —. Find the fixed points of this recursion, and
a

n
investigate the limiting behavior of a, when a; = 1.
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Limits of Sequences

Let apt1 = +/3a,. Find the fixed points of this recuksibn, and
investigate the limiting behavior of a, when ap = 1.
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Limits of Sequences

3 . . . .
Let a,11 = —. Find the fixed points of this recursion, and

n
investigate the limiting behavior of a, when ag is not equal to a
fixed point.
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s of Sequénces

The previous examples illustrate that fixed points are only
candidates for limits and that, depending on the initial condition,
the sequence {a,} may or may not converge to a given fixed point.

If we know, however, that a sequence {a,} does converge, then the
limit of the sequence must be one of the fixed points.

For this reason we say that a fixed point (or equilibrium) is stable
if sequences that begin close to the fixed point approach that fixed
point. It is called unstable if sequences that start close to the
equilibrium move away from it.

We will return to the relationship between fixed points and limits
in Section 5.6, where we will learn methods that allow us to
‘determine whether a sequence converges to a particular fixed point.
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Limits of Sequences

There is a graphical method for finding fixed points, which we

mention briefly below.

Given a recursion of the form a,11 = f(an),
a fixed point 2 satisfies a = f(a).

then we know that

This suggests that if we graph y = f(x) and y = x in the same
coordinate system, then fixed points are located where the two

graphs intersect, as shown in the picture below

¥ ]
15 -

10 -
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imits of Sequences

(a) Consider the sequence recursively defined by the relation
ani1 = 2ap(l — ap) ap =0 W

and assume that lim a, exists.
n—0o0

Find all fixed points of {a,}, and use a table or other
reasoning to guess which fixed point is the limiting value for
the given initial condition.

(b) Same as in (a) but with ag = 0.1.
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d Dynamics

“First-order difference equations arise in many contexts
in the biological, economic and social sciences. Such
equations, even though simple and deterministic, can
exhibit a surprising array of dynamical behaviour, from
stable points, to a bifurcating hierarchy of stable cycles,
to apparently random fluctuations. There are
consequently many fascinating problems, some concerned
with delicate mathematical aspects of the fine structure
of the trajectories, and some concerned with practical
implications and applications.”

Robert M. May, Nature (1976)

http://www.ms.uky.edu/“mal37
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More Population Models

odels appropriate?

o when studying seasonally breeding populations with
non-overlapping generations where the population size at one
generation depends on the population size of the previous
generation. (Many insects and plants reproduce at specific
time intervals or times of the year.)

@ when studying populations censused at intervals.
(These are the so-called metered models.)

The exponential (Malthusian) growth model described earlier fits
into this category: N;i1 = RN;.

We denote the population size at time t by Ny, t =0,1,2,... To
model how the population size at generation t + 1 is related to the
population size at generation t, we write Nypq = f(N;), where
the function f (updating function) describes the density

dependence of the population dynamics.
http://www.ms.uky.edu/"mal37




More Population Models

!

A recursion of the form given before is called a first-order recursion
because, to obtain the population size at time t + 1, only the
population size at the previous time step t needs to be known.

A recursion is also called a difference equation or an iterated map.

The name difference equation comes from writing the dynamics
in the form Nyy1 — Ny = g(N;), which allows us to track
population size changes from one time step to the next.

The name iterated map refers to the recursive definition.

When we study population models, we are frequently interested in
asking questions about the long-term behavior of the population:

Will the population size reach a constant value?
Will it oscillate predictably?
Will it fluctuate widely without any recognizable patterns?

http://www.ms.uky.edu/"mal37




More Population Models

In the three examples that follow
@ Beverton-Holt Recruitment Model,
@ Discrete Logistic Equation,
@ Ricker Logistic Equation,
we will see that discrete-timepopulation models show very rich
and complex behavior.

Earlier, we discussed the exponential growth model defined by the
recursion Ny;11 = RN; with Ny = population size at time 0.

When R > 1, the population size will grow indefinitely, if Ny > 0.

Such growth, called density-independent growth, is biologically
unrealistic. As the size of the population increases, individuals will
start to compete with each other for resources, such as food or
nesting sites, thereby reducing population growth.

We call population growth that depends on population density
density-dependent growth.

‘ http://www.ms.uky.edu/"a137




More Population Models

To find a model that incorporates a reduction in growth when the
population size gets large, we start with the ratio of successive
population sizes in the exponential growth model and assume Ny > 0:

N 1

Nt_|_1 R

The ratio N¢/N;41 is a constant. If we graphed this ratio as a
function of the current population size N, we would obtain a
horizontal line in a coordinate system in which N; is on the
horizontal axis and the ratio N;/N;11 is on the vertical axis.

Note that as long as the parent-offspring ratio N;/N;y1 is less than
1, the population size increases, since there are fewer parents than
offspring. Once the ratio is equal to 1, the population size stays

the same from one time step to the next. When the ratio is greater
than 1, the population size decreases.

http://www.ms.uky.edu/ " mal37




More Population Models

To model the reduction in growth when the population size gets
larger, we drop the assumption that the parent-offspring ratio
N;:/N¢y1 is constant and assume instead that the ratio is an
increasing function of the population size N;. That is, we replace
the constant 1/R by a function that increases with N;. The
simplest such function is linear.

1

1 — — NN
N 1 NN,
t - — + ______E_./\/t

Nipi R K

The population density where the parent-offspring
ratio is equal to 1 is of particular importance, since
it corresponds to the population size, which does
not change from one generation to the next.

We call this population size the carrying capacity and denote it by
K, where K is a positive constant.

o

http://www.ms.uky.edu/“mal37




More Population Models

If we solve for N;;1 we obtain

RN
Newr = —p 7

14+ ——N
+Kt

This recursion is known as the Beverton-Holt recruitment curve.

We have two fixed points when R > 1: the fixed point N = 0,
which we call trivial, since it corresponds to the absence of the
population, and the fixed point N = K, which we call nontrivial,
since it corresponds to a positive population size.

One can show that, when K > 0, R > 1, and Ny > 0, we have that

f—>00

http://www.ms.uky.edu/“mal37
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More Population Models

The Beverton-Holt stock recruitment model (1957) was used,
originally, in fishery models. It is a special case (with b =1) of the
following more general model: the Hassell equation.

The Hassell equation (1975) takes into account intraspecific
competition, more specifically scramble competition?, and takes
the form

N RoN¢
t+1 = (14 kN)E
We have under-compensation for 0 < b < 1;

we have exact compensation for b = 1;
we have over-compensation for 1 < b.

In ecology, scramble competition refers to a situation in which a resource is
accessible to all competitors.
http://www.ms.uky.edu/~"mal37




More Population Models

The most popular discrete-time single-species model is the discrete
logistic equation, whose recursion is given by

N
Nep1 = Ny [1+R(1-—7€’5H

where R and K are positive constants. R is called the growth
parameter and K is called the carrying capacity.

This model of population growth exhibits very complicated dynamics,
described in an influential review paper by Robert May (1976).

We first rewrite the model in what is called the canonical form

Xep1 = T Xf(}. — Xt)
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More Population Models

The advantage of this canonical form is threefold:

(1) The recursion xt11 = rx¢(1 — x¢) is simpler;

(2) instead of two parameters, R and K, there is just one, r;

R
K(1+ R)
What does dimensionless mean? The original variable Ny has units
(or dimension) of number of individuals; the parameter K has the

(3) the quantity x; = N; is dimensionless.

same units. Dividing N; by K, we see that the units cancel and we
say that the quantity x; is dimensionless. The parameter R does not
have a dimension, so multiplying N;:/K by R/(1+ R) does not
introduce any additional units. A dimensionless variable has the
advantage that it has the same numerical value regardless of what
the units of measurement are in the original variable.

http://www.ms.uky.edu/“mal37
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More Population Models
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More Population Mddels

Notice that we can write xr41 = rx:(1 —x;) as  xep1 = f(xe),

where the function
f(x)=rx(1—x)

is an upside-down parabola, since r > 1.

rax{l — x)
{
o
LR
I

,I.
in
—

In order to make sure that f(x;) € (0,1) for all t, we also require
that r/4 < 1, or r < 4. In fact, the maximum value of f(x) occurs

at x =1/2, and f(1/2) = r/4.

Hence we need to impose the assumption that

http://www.ms.uky.edu/“mal37
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More Population Models

e

We first compute the fixed points of the discrete logistic equation
written in standard form.

We need to solve x = rx(1 — x).

Solving immediately yields the solution X = 0. If x # 0, we divide
both sides by x and find that

. 1
1=r(1l—x), or X=1——.
r

Provided that r > 1, both fixed points are in [0, 1).

The fixed point X = 0 corresponds to the fixed point N = 0, which
is why we call X = 0 a trivial equilibrium. When X =1 —1/r we

P

obtain that N = K is the other fixed point.

http://www.ms.uky.edu/"mal37
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More Population Mode

The long-term behavior of the discrete logistic equation is very
complicated. We simply list the different cases. |

If 1 < r<3andxo € (0,1), x; converges to the fixed point 1 —1/r.

Increasing r to a value between 3 and 3.449..., we see that x;
settles into a cycle of period 2. That is, for t large enough, x:
oscillates back and forth between a larger and a smaller value.

For r between 3.449... and 3.544..., the period doubles: A cycle of
period 4 appears for large enough times.

Increasing r continues to double the period: A cycle of period 8 is
born when r = 3.544..., a cycle of period 16 when r = 3.564...,
and a cycle of period 32 when r = 3.567....

This doubling of the period continues until r reaches a value of

http://www.ms.uky.edu/“mal37
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More Population Models

An iterated map that has the same (desirable) properties as the
logistic map but does not admit negative population sizes
(provided that Ny is positive) is Rickers curve. The recursion,
called the Ricker logistic equation, is given by

N Nees | B Ny L
t+1 = Vg €XP T K s

where R and K are positive parameters.

N ]
Db w0

As in the discrete logistic model, R is the growth parameter and K
is the carrying capacity. The fixed points are N =0 and N = K.

The Ricker logistic equation shows the same complex dynamics as
the discrete logistic map [convergence to the fixed point for small
positive values of R, periodic behavior with the period doubling as
R increases, and chaotic behavior for larger values of R].

http://www.ms.uky.edu/"mal37
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- More Population Models

@ In Section 5.6 we will analyze in greater details and with more
tools the stability of the equilibria in the previous models.

On our class website there are three applets (created with the
graphic package GeoGebra) that allow us to visualize the
behavior of the previous three models by varying the various
parameters. Please use them! These applets require the latest
version of Java.

» What we described in Section 2 could be a great source for
your Final project (which is due on December 4) both in
terms of substantial mathematical component and adequate

~biological and/or medical content. Please start thinking about
a possible project! |

http://www.ms.uky.edu/"mal37
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