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The Derivative of a Function

‘@ Population growth in populations with discrete breeding seasons

(as discussed in Chapter 2) can be described by the change in
populatlon size from generation to generation.

@ By contrast, in populations that breed continuously, there is no
natural time scale such as generations. Instead, we will look at how
the population size changes over small time intervals.

@ We denote the population size at time t by N(t), where t is now
varying continuously over the interval [0, 00). We investigate how
the population size changes during the interval [ty, to + h], where
h > 0. The absolute change during this interval, denoted by AN, is

AN = /V(to —+ h) — N(tg).
@ To obtain the relative change during this interval, we divide AN by
the length of the interval, denoted by At, which is h. We find that
AN N(to+ h) = N(t)

At h

This ratio is called the average growth rate.
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We see from the picture below\‘[lef“’t»] fhat AN /At is the slope of the

secant line connecting the points (tp, N(to)) and (to + h, N(to + h)).
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Observe that the average growth rate AN/At depends on the

length of the interval At.

This dependency is illustrated in the picture above [right], where we
see that the slopes of the two secant lines (lines 1 and 2) are different.
But we also see that, as we choose smaller and smaller intervals,

the secant lines converge to the tangent line at the point (o, N(to))

of the graph of N(t) (line 3).

http://www.ms.uky.edu/~“mal37




The slope of the tangent line is called the instantaneous growth
rate (at tg) and is a convenient way to describe the growth of a
continuously breeding population.

To obtain this quantity, we need to take a limit; that is, we need to
shrink the length of the interval [tg, tg 4+ h] to O by letting h tend
to 0. We express this operation as

: AN : N(to+h)mN(fQ)
lim —— = Iim .
At—0 At h—0 h

In the expression above, we take a limit of a quantity in which a
continuously varying variable, namely, h, approaches some fixed
value, namely, 0.

We denote the limiting value of AN/At as At — 0 by N'(t)
(read “N prime of tp") and call this quantity the derivative of
N(t) at tp....provided that this limit exists!
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We formalize the previous discussion for any function f.

The average rate of change of the function y = f(x) between
X = Xp and x = xq Is

changeiny  f(x1) — f(xo)

change in x X1 — Xxg

By setting h = x1 — xp, i.e., x1 = xpo + h, the above expression becomes
Af  f(xo+ h) —f(x0)
Ax h
Those quantities represent the slope of
the secant line that passes through the

points P(xp, f(xp)) and Q(x1, f(x1))

[or P(x0, f(x0)) and Q(xo-+h, F(xo+h)), — M
respectively].

o
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The Derivative of a Function

The instantaneous rate of change is defined as the result of computing
the average rate of change over smaller and smaller intervals.

The derivative of a function f at xp, denoted by .f/.(Xo), Is

f'(x) = lim 'f(Xl)“,“ o)
~ X1’y—“—>Xo X1 — XO
g f(xo+ h) — f(Xo)
h—0 h

,prowded that the Ilmlt exists.

In thls case we say that the function fis dlfferentlable at xo

'._Geometrlcally f’v

Note: To save on indices, we can also write f'(¢) = lim
X—C X — C

to denote the derivative of f at the point c.
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' The Derivative of a Function

@ Now just drop the subscript 0 from the xp in the previous
derivative formula, and you obtain the instantaneous rate of
change of f with respect to x at a general point x. This is
called the derivative of f at x and is denoted with f'(x)

f(x+ h) — f(x) Af
/ | il
Fx) = A, h =AM Ax
It is a function of x...no longer a number!
o We say that f is differentiable on an open interval (a, b) if

f'(x) exists at every x € (a, b).

@ Notations: There is more than one way to write the derivative of a
function y = f(x). The following expressions are equivalent:

dy df d
/ / s
df o : . :
The notation I goes back to Leibniz and is called Leibniz notation.
df .
We can also write (—7,; to denote f'(xp).
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~ The Derivative of a Fﬂhtti'on

Let f(x) be the function 12x? — 2x + 11. Then the difference quotient
f(1+ h)—f(1)

h
can be simplified to ah + b for a = and b =
f(1+h)—f(1
Compute  lim (1+h) ( )
h—0 h

http://www.ms.uky.edu/ " mal37

S ——

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘



A 'FCX) =12 x5 —2x + 11

A+ J; (H—ﬁ) - 7@(,) \}2_ (l—i—ﬁ)z—-— 2 (1+ e») —t—\J-* \17—(‘)1—2(9‘*@ ,

g O
2 (1+26 «8%) ../{,...ZQ ;%(,__ P et
= . | L
3 g s w2 28 T 99 b+ 128
? e/ - B e
=22+ 0k

i ‘F(H')a) “f“(o_, Lo [22+ )’2—Q} —:ZK
* o - o —

ho0 s -

O



The Derivative of a Function

Online Homework HW11, # 4)

If f(x)=ax?+bx+c, find f'(x), using the definition of derivative.
(a, b, and ¢ are constants.)
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The Derivative of a Function

If the derivative of a functlon f exists at X = Xp, then f’(xo) is the |
‘slope of the tangent line at the point P(xo, | (xo)) f
" The equation of the tangent line to the graph of f at Pis glven by

The importance of computing the equation of the tangent line to
the graph of a function f at a point P(xp, f(x0)) lies in the fact
that if we look at a portion of the graph of f near the point P, it
becomes indistinguishable from the tangent line at P.

In other words, the values of the function are close to those of the
linear function whose graph is the tangent line.

For this reason, the linear function whose graph is the tangent line
to y = f(x) at the point P(xp, f(xo0)) is called the linear
approximation of f near x = xp.
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The Derivative of a Function

. BECELL 2 §) |

4 .
If f(x)=4x+ —, find f'(2), using the definition of derivative.
| X

Use this to find the equation of the tangent line to the graph of
y = f(x) at the point (2, (2)).
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The Derivative of a Function
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The Derivative of a Function

Assume that f(x) is everywhere continuous and it is given to you
that

f
jim 19 g
x—=7 X — 1
It follows that y = is the equation of the tangent
line to y = f(x) at the point (_—, ). |
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The limit below represents a derivative f'(a).
_(—4+ h)>+64
lim :
h—0 h

Find f(x) and a.

http://www.ms.uky.edu/"mal37




C4+IQ) + 64

f(“) "ﬁ—a )
- /@‘/w. &41—8)5 l (—é(c)
Yy £
_ Lo (—¢ +¢ ) - (’4“)2
4— o 4

Poom | ]




Trhe Derivative of a Function

A function f is differentiable at a point if the derivative at that
point exists. That is, if the tangent line at that point is well defined.

There are two ways that a tangent line might not exist.
It depends on how limits fail to exist:

(a) left-hand and right-hand limit do not agree;
(b) one of these limits is infinite.

Continuity alone is not enough for a function to be differentiable:

(a) The function f(x) = |x| is continuous at all
values of x, but it is not differentiable at
x = 0. It has a sharp corner at x =0 Slope o

.....

FOX) e

(e, fc))

(b) The function f(x) = x%/3 is continuous for all
X, but It IS not dlfferentla ble at x = O eﬁ%%(i}p&;"i‘(i“‘{.}k‘]‘?i
. ® - ' the right
There is a vertical tangent line at x = 0. ek
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The Derivative of a Functio

Proof To show that f Is continuous at x = Xxp, we must show that

Xh_}rh( f(x) = f(xo) or X|Lr;r>]< [f(x) — f(x0)] = 0.
However Xli_>n)1<0[f(x) — f(x0)] = Xli_@(O _f(x))< : )’;EXO) - (x — Xo)}
= |lim (x) = f(XO)} lim (x — xp)
x—xp | X — Xp X—X0
= f'(xo) - len;‘q)(X — Xp)
== f/(Xo) -0
= 0.

http://www.ms.uky.edu/"mal37




The Derivative of a Function

Find a and b so that the function
( x2 —2x+3 if x <2

kax2+6x+b if x > 2

is both continuous and differentiable.

‘http://www.ms.uky.edu/"ma137
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Basic Rules of Differentiation
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Basic Rules of Differentiation

Since polynomials and rational functions are built up by the basic
operations of addition, subtraction, multiplication, and division operating
on power functions of the form y =x",n=0,1,2,..., we need

differentiation rules for such operations.

d
L 2] = e -0

2. Cf() +elx >]—§-—f(x>+ < g(x)
| d ronl
—a—)—(-x | = nx

0.

n—1

http://www.ms.uky.
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. BaAsi,c‘ Rules of Différenti‘ation

Differentiate  f(x) = —1 + 3x% — 2x*  with respect to x.
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Basic Rules of Differentiation

Differentiate ,

bN< + N
f(N) =
(N) K+ b

with respect to N. Assume that b and K are positive constants.
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with respect to . Assume that K and r are positive constants.
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Basic Rules of Differentiation

Find the tangent line to
f(x) = cx® — 2cx

at x = —1. Assume that c is a positive constant.

- http://www.ms.uky.edu/“mal37
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Basic Rules of Differentiation

A segment of the tangent line to the graph
of f(x) at x is shown in the picture. Using
information from the graph we can estimate
that

f(2) = F(2) =

hence the equation to the tangent line to the
graph of

g(x) = 5x + F(x)

at x = 2 can be written in the form y = mx + b where

m = b:




- Faowr  Hu We 7@(2)23 7fl<l)=——-§=~2

| * cd(x)=f5>< +f(x)

At x=2 %}(z):3~2+ 7(3(1)== 10+ 3 =13

—

About Y duivalve of g g/Cx)=5+7[”(X)
o gk %/(z): s + [ = S-2= 3
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i s S S G
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 Basic Rules of Differentiation

Lizards are cold-blooded animals whose temperatures roughly
match the surrounding environment. Suppose the body
temperature, T(t), of a lizard is measured for a period of 18 hours
from midnight until 6 PM. The body temperature (in °C) of the
lizard over this period of time (in hours) is found to be well
approximated by the polynomial

T(t) = —0.009t> 4 0.29t* — 1.7t + 15.5.

(a) Find the general expression for the rate of change of body
temperature per hour, T'(t).

(b) Use this information to find what the rate of change of body
temperature is at: midnight; 4 AM; 8 AM; noon; 4 PM.

(c) Which of these times gives the fastest increase in the body
temperature and which shows the most rapid cooling of the
lizard?
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~ Basic Rules of Differentiation

0. Define f(x) = c and use the definition of the derivative:
Flx+h)—f -
f'(x) = lim M =) i €€ im0 =o0.
h—0 h h—0 h h—0

1. We use the definition of the derivative and one of the Limit Laws:

()] = /li_'l"'o cf (x + h/)7— cf (x) _ C/L@O f(x + h/)7— f(x)

= cf'(x).

2 We use the definition of the derivative, rewrite the numerator and
then use one of the Limit Laws:

i+ gl () % lim [f +g](x+ h) —[f +&](x)

h—0 h

o [Pt B) g0t B~ [0 + ()
h—0 h

TG B~ 0]+ e+ ) — g(x)
h—0 h

e PR = F0) gt ) g0 g

h—0 h h—0 h

x) + g'(x




Basic Rules of Differentiation

Special product formulas: | The powers of certain binomials occur so frequently that we should memorize the following

formulas. We can verify them by performing the multiplications.

If A and B are any real numbers or algebraic expressions, then:

1. (a—i—b)2:32+2ab—}-b2 3. (a+b)3:a3—|—3azb+3ab2+b3
2. (a— b)? = a® — 2ab + b* 4. (a—b)® = a® —3a°b 4 3ab® — b°
Visualizing a formula: Pascal’s triangle:

The coefficients (without sign) of the expansion of a binomial of
the form (a = b)” can be read off the n-th row of the follow-
ing ‘triangle’ named Pascal’s triangle (after Blaise Pascal, a 17th
century French mathematician and philosopher).

Many of the special product formulas can be seen as
geometrical facts about length, area, and volume. The
ancient Greeks always interpreted algebraic formulas in
terms of geometric figures.

To build the triangle, start with ‘1" at the top, then continue
placing numbers below it in a triangular way. Each number is
simply obtained by adding the two numbers directly above it.

For example, the figure below

<« a+ b —>

®
1 n=20
b
P ) P 1 1 n=1
a+ b
( ) 1 n=2
a
311 n=3
B
a b 4 |11 n==4
shows how the formula for the square of a binomial |— | I | l
(formula 1) can be interpreted as a fact about areas of LlO 10_1 Ll n=>5

squares and rectangles. | r -1 -l T I—— _l T l—— —‘
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3. We usve the definition of the derivative and the Binomial Theorem.

The Binomial Theorem tells us

- Basi¢ Rulés-bf’Diffe “’hti"at' -

Let's now use the definition of the derivative with f(x) = x":

f'(x)

def . f(x+ h) — f(x) _ i (x + h)" — x"
h—0 h h—0 h

— lim {x" 4+ nx""th+[n(n—1)]/2x"2h* + -+ + nxh""1 + A"} — X"
h—0 h

. nx""Th + [n(n—1)]/2x"72h> + .-+ + nxh""1 + A"

~ h—0 h | |

_ im {nx""1 4+ [n(n—1)]/2x"2h+ -+ nxh"2 + h""1}h
h—0 h

= /lig]o{nx”—l +[n(n—1)]/2x"2h+ -+ nxh"> + A"}

= nx"1
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Basic Rules of Differentiation

3’. Define f(x) = x". We know from the alternate limit form of the
definition of the derivative that the derivative f'(x) is given by,

xy — x"

P = tim VT

X1—=X X1 — X X1—x X1 — X '

Now we have the following formula,
X —x" = (x1 —x) (X o2+ xx] X" X" X

which we can verify by simply multiplying the two factors together.

Let's now use the alternative definition of the derivative with f(x) = x™:

f'(x) = lim fa) = ) _ = lim X =X
X1—rX X1 — X X1—%X X1 — X
1 3 _
im O — x) A 402 4 XX 4 XTI 4 X2 + X
= i
X1 —+X X1 — X
= lim (77 x24T 4 XTI 4 X x4 x"1)
X1 —»X
= nx"1 [as there are n equal terms in the expression]

http://www.ms.uky.edu/ mal37
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Basic Rules of Differentiation

ules (cont'd)

Suppose i re different *, .
3fo//owmg relatlonsh/ps hold

: (X> g(x>]_—_- .-—-[f<x)] g(x) + f(x) - [g(x)

'r/menotart/on) (fg) (x) — f ’ (X) g(x) —I— f ( X) g (X)

. [ (x)] (x) ~f <X) [ (X”
[g(x)]

http://www.ms.uky.edu/”mal37 Lecture 20 .




Basic Rules of Differentiation

wer Rule for Negative Exponents

‘The quotient rule allows us to extend the power rule to the case where

the exponent is a negative integer:

Proof: We write f(x) = — and use the quotient rule
X

0-x"—1- n—1 n—1 |
f/(X) _ X [Xn]2nX _ _n);2n _ _nX(n—l)—Qn — _nX—n—l.

There is a general form of the power rule in which the exponent can be
any real number. In Section 4.4, we give the proof for the case when the
exponent is rational; we prove the general case in Section 4.7.

http://www.




Differentiate
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Basic Rules of Differentiation

e (O nline Ho 5

Differentiate  Y(u) = (u=2 4+ u3)(v° + v?).
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Assume that f(x) is differentiable.

Find an expression for the derivative of
y = —bx>f(x) — 2x
at x = 1, assuming that f(1) =2 and f'(1) = —1.
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Differentiate  f(x) =

cx +d
where a, b, ¢, and d are constants and ad — bc # 0.
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Basic Rules of Differentiation . -

(Online Homework HW12, # 22)

Find an equation of the tangent line to the given curve at the
specified point:

y = x\{EB P(4,2/7).
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mple # 6, p. 155)

Differentiate the Monod growth function
aR
k+ R
where a and k are positive constants.

f(R) =

http://www.ms.uky.edu/“mal37
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Assume that f(x) is differentiable.
Find an expression for the derivative of
_ )
x2+1
at x = 2, assuming that f(2) = —1 and /(2) = 1.

y
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Basic Rules of Differentiation

Proofs:
4. We use the definition of the derivative, rewrite the numerator in a

‘tricky’ way and use the limit laws and the continuity of the functions.

(fg)(x +h) — (fg)(x)

() (x) & |

def Z;: F(x + h)g?X +hh) — f(x)g(x)
 trick I!'i_TO f(x+ hg(x+ h) | —F(x)g(x +hh) + f(x)g(x 4+ h)| — f(x)g(x)
- lim [f(x + hlz — f(x) 20+ h) + F(x) gx + h/z — g(X)}
e M@o et b f(x)} “@Og(x ¥ h)} F£(x) M_TO gt )= g(x)}

() g(x) + f(x) g (x).
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Basic Rules of Differentiation

5. We use the definition of the derivative, rewrite the numerator in a

‘tricky’ way and use the limit laws and the continuity of the functions.

(f/g) (x) =
ot (1)) (/)
- h—0
f(x+ h) (x)
def |\ _ g(x+ h) - g(x) _ lim f(x+ h)g(x) — f(x)g(x + h)
h—0 h h—0 hg(x)g(x+ h)
o 10+ 80 [F(80 + F()8(0)] ~ F(elx +
~ h50 hg(x) g(x + h)
_ o [ h) =09 () g(x +h) —g(x)
h—0 hg(x+ h) hg(x)g(x + h) :
ry;l_e lim f(X—|- h) — f(X) T 1 — lim f(X) i g(x+ h) . g(x)
h—0 ~ h h—0 g(x + h)  h—o0 g(x)g(x+ h) k=0 h |
cont. ., f(x f'(x) g(x) — f(x) g'(x)
050 o O e
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A differential equation is an equation that contains
an unknown function and one (or more) of its derivatives.

For example

. d

6y =7, a — 6t

dX+ y o dt+0.2ty—6t,
dP

@E:\/Pt; @ xy +y =y

If a differential equation contains only the first derivative,
.. d
it is called a first-order differential equation: B—X = h(x,y).
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Consider the differential equation  (t + 1)5)—;— —y+6=0.

Which of the following functions
yl(t) =t+7 yg(t) = 3t + 21 y3(t) :3t+9

are solutions for all t7
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A First Look at DEs

C = any constant

is a (family of) solution(s) of the differential equatioh

y' —3(y —1)*°x* = 0.







Look at DEs

DEs arise for example in biology (e.g. models of population growth),

economics (e.g. models of economic growth), and many other areas.

exponential growth model:

logistic growth model:

Newton’s law of cooling:

von Bertalanffy models:

Solow’s economic growth

model:

http://www.ms.uky.edu/ "mal37

dN

dt

dN
dt
dT
dt
dL
dt
dW
dt
dk

I sk — sk
a

rN  N(0) = No;
(1% wo=m

— k(T —T.) T(0)=To

— k(Lo — L) L(0) = Lo;

= W33 — kW W(0) = Wo; |

S ————




A biological population with plenty of food, space to grow, and no
threat from predators, tends to grow at a rate that is proportional
to the population — that is, in each unit of time, a certain
percentage of the individuals produce new individuals.

If reproduction takes place more or less continuously, then this
growth rate is represented by

dN

— =
where N = N(t) is the population as a function of time t and r is
the growth rate.

riV,

Assume also that Ny is the population at time t = 0.

Note: r = birth rate — mortality rate.
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3
A First Look at DEs ~  Examples

says that the per capita growth rate
in the exponential model is a constant -
function of population size. 7 N

We will show (later) that the solution to this differential equation is

N(t) — Noert :
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A First Look at DEs ~ Examples

mm of an A

oglstlc Growth Model ( Verhulst Model)

@ In short, unconstrained natural growth IS exponent|al growth.

@ However, we may account for the growth rate declining to 0
by including a factor 1 — N /K in the model, where K is a
positive constant.

@ The factor 1 — N/K is close to 1 (that is, has no effect) when
N is much smaller than K, and is close to 0 when N is close to K.

@ The resulting model,

dN N . |
dt ——rN 1_—/'—(— Wlth N(O) ——-«

is called the logistic growth model or the Verhulst model.

The word “logistic” has no particular meaning in this context, except that it is commonly accepted. The second
name honors Pierre Francois Verhulst (1804-1849), a Belgian mathematician who studied this idea in the 19th
century. Using data from the first five U.S. censuses, he made a prediction in 1840 of the U.S. population in 1940 —

and was off by less than 1%.
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A First Look at DEs

Rewriting this differential equation as | L dN N
- | N dt A — va=r1-%)

1 dN _ (4 N |

N dt K '

says that the per capita growth rate in
the logistic equation is a linearly
decreasing function of population size. | K N
Note: r (=growth rate) and K (=carrying capacity) are positive
constants.

- We will show (later) that the solution to this differential equation is

Observe that lim N(t) =

t—00
This justifies that the constant K is dubbed carrying capacnty
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A First Look at DEs

ia of an Autonomous DE

Cooli

It states that the rate at which an object cools is proportional to
the difference in temperature between the object and the

surrounding medium:

dTl

— = —k(T — T,) T(0) = To,
dt

where k is a positive constant.

We can show that the solution
of this IVP is given by To

y: Te""‘(TO_ Te)e_kt

T(t)=Te+ (To— Te)e ¥

Notice also that

t—00

lim T(t) :tim [Tet+(To—Te)e <] = T..
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Definition
A First Look at DEs  Examples

f Mgméaﬁww of an Autonomous DE

n Bertalanffy (Restrlcted) Growth Equatlon

A commonly used DE for the growth, in length, of an individual fish is

dL

| dt
where L(t) is length at age t, Lo is the asymptotic length and k is
a positive constant. The DE captures the idea that the rate of
growth is proportional to the difference between asymptotic and
current length.
We can show that the solution of
this IVP is given by

L(£) = Loo — (Loo — Lo)e™t |

Notice also that

lim L(t) = lim [Loo—(Loo—Lo)e_kt] = Lo
t—o00
http.//www.ms.uky.edu/"ma137 ; Lecture 21




A First Look at DEs

tric Growth

In biology, allometry is the study of the relationship between sizes
of parts of an organism (e.g., skull length and body length, or leaf
area and stem diameter).

We dvenote by L1(t) and Ly(t) the respective sizes of two organs of
an individual of age t. We say that L; and Ly are related through
an allometric law if their specific growth rates are
proportional—that is, if

1 dLy L 1 dLy

Ly dt Ly dt
for some constant k. If k is equal to 1, then the growth is called
isometric; otherwise it is called allometric.

We will show that he solution to this differential equation is

[ = CLX

for some constant C.
| ‘ http //www.ms. uky edu/"mal37
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The nutrient content of a consumer can range from reflecting the
nutrient content of its food to being constant. A model for
homeostatic regulation is provided in Sterner and Elser (2002). It
relates a consumers nutrient content (denoted by y) to its foods
nutrient content (denoted by x) as

dy ly

dx 0 x
where # > 1 is a constant.

/01 for some positive constant C.

We can show that |y = Cx

Absence of homeostasis means that the consumer reflects the food's
nutrient content. This occurs when y = Cx and thus when 6 = 1.

Strict homeostasis means that the nutrient content of the
consumer is independent of the nutrient content of the food; that
is, y = C; this occurs in the limit as § — oo.
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A First Look at DEs Exan . .
Equilibria of an Autonomous DE

ia of an Autonomous DE

Many of the DEs that model biological situations are of the form

dy

dx g(y)

where the right-hand side does not depend explicitly on x. (We
will typically think of x as time.) The equations are called

autonomous differential equations.

Constant solutions form a special class of solutions of autonomous
differential equations. These solutions are called (point) equilibria.

Example| For example
Nl(t) =0 and Ng(t) = K

are constant solutions to the logistic equation

dN N
T ow(1-2).
dt r( K)
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A First Look at DEs

a of an Autonomous DE

Basic Property

The basic property of equilibria is that if, initially (say, at x = 0),

y(0)=y and y isan equilibrium, then y(x)=1y forall x> 0.
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A First Look at DEs

of an Autonomous DE

of Equilibria

Of great interest is the stabllyity of equilibria of a ‘dlfferentla»l» equation.
This is best explained by the example of a ball on a hill vs a ball in
a valley:

a ball rests on top of a hill a ball rests at the bottom of a valley

In either case, the ball is in equilibrium because it does not move.

If we perturb the ball by a small amount (i.e., if we move it out of
its equilibrium slightly) the ball on the left will roll down the hill
and not return to the top, whereas the ball on the right will return

to the bottom of the valley.

The ball on the left is unstable and the ball on the right is stable.

http://www.ms.uky.edu/"mal37 L‘ecvtvure 2,1: .




A First Look at DEs Examples
 Equilibr

y for Equilibria of DE

. - d . ~
Suppose that y is an equilibrium of ZJX = g(y); thatis, g(y)=0.
, X

We look at what happens to the solution when we start close to
the equilibrium; that is, we consider the solution of the DE when
we move away from the equilibrium by a small amount, called a

small perturbation. |

We say that y is locally stable if the solution returns to the
equilibrium y after a small perturbation;

We say that y is unstable if the solution does not return to the
equilibrium y after a small perturbation.

We will discuss stability of equilibria in great detail in MA 138.
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Rules of Differentiation
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‘hain Rule

Rules of Differentiation

I\/

@ The proof of the theorem is on p. 164 of the Neuhauser's textbook.

@ The function g is the inner function; the function f is the outer function.

@ The expression f'[g(x)] - g'(x) thus means that we need to find the
derivative of the outer function, evaluated at g(x), and the derivative
of the inner function, evaluated at x, and then multiply the two together.

@ A special case of the chain rule is called the power chain rule:

If y=1[f(x)]" then —3% = n[f(x)]"" 1. F(x)

http://www.ms.uky.edu/“mal37 Léétﬂre 22_. .




Rules of Differentiation

The derivative of f o g can be written in Leibniz notation.

If we set u = g(x), then

dlrom)l = Lrlekl
v=g(x) d
= a—)—(f(u)
df du
= @&

This form of the chain rule emphasizes that, in order to
differentiate f o g, we multiply the derivative of the outer function
and the derivative of the inner function, the former evaluated at v,

the Iatter at x.
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(Online Homework HW13, # 3)

Let F(x) = f(£(x)) and G(x) = (F(x))? and suppose that
f5)=3 f(7)=5 f(5)=8 f(7)=13

Find F'(7) and G'(7). |

 Lecture 2 .
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Rules of Differentiation ~~ Examples

E mple 2:| (Online Homework HW13, # 6)

f 9 _ |
Let f(x)= 2 3% 1 6)1 Find f/(x).
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 The Chain Rule
Rules of Differentiation
&35@' he s&“@mg atives

otient Rule Using the Cham Rule

We can prove quotient rule using the product and (power) chain rules.
Treat the quotient f/g as a product of f and the reciprocal of g. l.e.,

f(X) 1
2(x) = f(x) - g(x)~

Next, apply the product rule
f—(il/— x)-g(x)7Y = f(x) g(x)? x) - [g(x)"Y

(L20) =100 2001 = 100809+ 00 6007

and apply the (power) chain rule to find [g(x)™]’. We obtain
= F(x) - [g(x) "+ () - [(=Dg(x) - g'(x)]
Finish by writing the expression with a common denominator of [g(X)]?
_(x)-8(x) —f(x) - g (x)
[g(x)]?
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5, p. 161)

X
x+1

Find the derivative of h(x) =

http://www.ms.uky.edu/"mal37 ‘Lecture 2




2

= i)

ot

Ba NI (Tm) PRoin el

e\ (’ID—- 2 < T+ ) 'Dc—(—{
\ o |- (x+1) — = (1)
B X+t (Z+1)"
-




Rules of Differentiation ‘
Hig rivatives

lem # 32, p. 172

(Neuhause Pro
N

Differentiate  g(N) = with respect to .

| (k + bN)3
Assume that b and k are positive constants.
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# 39, p. 172) '

g(2x) + 2x
assuming that 7 and g are both differentiable functions.
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Rules of Differentiation v ‘ .
~ Higher Derivatives

Derivatives

i The derivative of a function f is itself a function. We refer to
this derivative as the first derivative, denoted f’. If the first
derivative exists, we say that the function is once differentiable.

@ Given that the first derivative is a function, we can define its
derivative (where it exists). This derivative is called the
second derivative and is denoted f”. If the second derivative
‘exists, we say that the original function is twice differentiable.

@ This second derivative is again a function; hence, we can
define its derivative (where it exists). The result is the third
‘derivative, denoted . If the third derivative exists, we say
that the original function is three times differentiable.

s \We can continue in this manner: from the fourth derivative on,
we denote the derivatives by f(*), f(5) and so on.
If the nth derivative exists, we say that the original function is

'n times differentiable.
http://www.ms.uky.edu/"mal37 Lecture 22 . '




Rules of Differentiation

 Higher Derivatives

@ Polynomials are functions that can be differentiated as many
times as desired. The reason is that the first derivative of a
polynomial of degree n is a polynomial of degree n — 1. Since
the derivative is a polynomial as well, we can find its
derivative, and so on. Eventually, the derivative will be equal

to 0.
@ We can write higher-order derivatives in Leibniz notation:
The nth derivative of f(x) is denoted by |
d"f
dx"

http://www.ms.uky.edu/ “mal37 v ‘Lect,u'r‘e‘ 20




Rules of Differentiation
Higher Derivatives

(Online Homework HW13, # 4)

“Find the first and second derivatives of the following function

f(x) = (5—3x%)*

http://www.ms.uky.edu/"mal37 Let_:_t'u_re' 22




‘ﬁ ()= (5 - %xl) *

Thew
¥/(Z>= A (5‘312') ' (—-éx)
|

3
- — 24 = (‘5’321)

g = E >
Plleye —an(sm3) = 2ex[3 (530 )
_ _ou(5-3x%) +Bau R’ (s-22%)

- Qg(g_gx7'>z‘ {-—~<S——Bx”> + l&xL]
\Ew Qg'_ng)L. (2\%2-§>7
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Rules of Differentiation

er Derivatives

”":"-,:iEx mple 7:| (Online HomeWofk HW13, # 16)

Find the first and second derivatives of the following function
1 —4u | |

Y = 113
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Rules of Differentiation
_ Higher Derivatives

Velocity and Acceleration

The velocity of an object that moves on a straight line is the

derivative of the objects position. The derivative of the velocity is
the acceleration.

If s(t) denotes the position of an object moving on a straight line,

v(t) its velocity, and a(t) its acceleration, then the three quantities
are related as follows:

ds dv  d?s

v(t) = — and at) = — = —.

() da () dt  dt?

http://www.ms.uky.edu/"mal37 ~ Lecture 22




Higher Derivatives

(Neuhauser, Problem #

Neglecting air resistance, the height h (in meters) of an object
thrown vertically from the ground with initial velocity vo is given by

1
h(t) = vt — 5gt2

where g = 9.81m/s? is the earth’s gravitational constant and t is
the time (in seconds) elapsed since the object was released.

(a) Find the velocity and the acceleration of the object.

(b) Find the time when the velocity is equal to 0. In which
direction is the object traveling right before this time? in
which direction right after this time?
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Implicit Differentiation

it Differentiation
So far, we have considered only functions of the form y = f(x),
which define y explicitly as a function of x.

It is also possible to define y implicitly as a function of Xx, as in the
following equation:

x>+ y> = bxy | (1)
Here, y is still given as a function of x (i.e., y is the dependent
‘variable), but there is no obvious way to solve for y.

Below are the graphs of three such functions related to equation
(1), dubbed the folium of Descartes.

VA ¥ YA y

X'y =6xy

0 « 0 x 0 X of
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‘ 'Théory o

Implicit Differentiation

‘When we say that f is implicitly defined by the equation given in (1),
we mean that the equation

X3+ [f(X)]? = 6xf(x)

is true for all values of x in the domain of f.

Fortuhately, there is a very useful technique, based on the chain rule,
that will allow us to find dy/dx for implicitly defined functions.

This technique is called implicit differentiation.

“We summarize the steps we take to find dy/dx when an equation
defines y implicitly as a differentiable function of x:

1. Differentiate both sides of the equation with respect to x,
keeping in mind that y is a function of x.

[Note: differentiating terms involving y typically requires the chain rule.]

2. Solve the resulting equation for dy/dx.

Lecture 23
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Implicit Differentiation

(a) Find y’ if y is implicitly defined by x3 4+ y3 = 6xy.

(b) Find an equation for the tangent line to the folium of Descartes
x3 4+ y3 = 6xy at the point (3, 3).
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Theory

Implicit Differentiation
- Examples

(Online Homework HW14, #

Given xy + 2x + 3x? = —4:
(a) Find y’ by implicit differentiation.

(b) Solve the equation for y and differentiate to get y’ in terms of x.
(The answers should be conS|stent|)
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Implicit Differentiation
Examples

(Neuhauser, Problem # 54, p. 172

Find dy/dx by implicit differentiation if

X
xy + 1

= 2Xy.
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 Theory

Implicit Differentiation _
Examples

|e 4:| (Online Hom work HW14 # 6)

Use Imp|ICIt differentiation to find an equation of the tangent line
to the curve (called cardioid)

X2+ y? = (2x% 4+ 2% — x)?
at the point (0,1/2).
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I heory

Implicit Differentiation ;
Examples

r Rule for Rational Exponents

We now provide a proof of the generalized form of the power rule
when the exponent r is a rational number: -g—;(x”) = rx"1.
We write r = p/q, where p and g are integers and are in lowest
terms. (If g is even, we require x and y to be positive.) Then

L y=x ey =Xl e =P
Differentiating both sides of y9 = xP with respect to x, we find that

qy"“l% = pxP
X

Hence |
d _ px L_p_ X _F xP _ P p—1-(p—p/q)
dx gyl g (Xp/q)q——l g xP—P/4 q
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Related Rates

An important application of implicit differentiation is related-rates
problems.

In a related-rates problem the idea is to compute the rate of
change of one quantity in terms of the rate of change of another
quantity (which may be more easily measured).

For instance, suppose'that y is a function of x and both y and x
“depend on time. If we know how x changes with time (i.e., if we
know dx/dt), then we might want to know how y changes with
time (i.e, dy/dt).

It is almost always better to use Leibniz's notation —C-/—); if we are

differentiating, for instance, the function y with respect to time t.
The y’ notation is more ambiguous when working with rates and
should therefore be avoided.

‘ http://www.ins.uky;‘edij/-"fhai37




Consider a parcel of air rising quickly in the atmosphere. The parcel
expands without exchanging heat with the surrounding air.

Laws of physics tell us that the volume (V') and the temperature® (T) of
the parcel of air are related via the formula - |

TVIl=C

where v is approximately 1.4 for sufficiently dry air and C is a constant.

To determine how the temperature of the air parcel changes as it rises,

we implicitly differentiate TV7™ 1 — C with respect to time t:

dVv dr ~ T dV
CZfT\/Vl—FT( ~ 1)V 2 — =0 or ('y—l——d

dt dt V dt’
Since rising air expands with time, we express this relationship as dV /dt > 0.
We conclude then that the temperature decreases (i.e., dT /dt < 0),
since both T and V are positive and v ~ 1.4.

1The temperature is measured in kelvin, a scale chosen so that the
temperature is always positive. The Kelvin scale is the absolute temperature scale

http://www.ms.uky.edu/ " mal37




Related Rates

Read the problem and |dent|fy the variables.

Time is often an understood variable. If the problem involves geometry, draw a picture and label it. Label

anything that does not change with a constant. Label anything that does change with a variable.

Write down which derivatives you are given.

Use the units to help you determine which derivatives are given. The word “per” often indicates that you

have a derivative.

Write down the derivative you are asked to find.

“How fast...” or “How slowly...” indicates that the derivative is with respect to time.

Look at the quantities whose derivatives are given and the quantity
whose derivative you are asked to find. Find a relationship between

all of these quantities.
Use the chain rule to differentiate the relationship.

Substitute any particular information the problem gives you about
values of quantities at a particular instant and solve the problem.

To find all of the values to substitute, you may have to use the relationship you found in step 4. That is,

take a snapshot of the picture at that particular instant.
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Related Rates

A spherical balloon is inflated so that its volume is increasing at
the rate of 2.1 ft>/min. How rapidly is the diameter of the balloon
increasing when the diameter is 1.5 feet?

_http://www.ms.uky.edu/ mal37




V = aolure ag . SwaL Lol oo

o - AV £

i\/: —;qu“ ( [BE;—" \’pﬁwm’(
We Rae awd ek %MJ:W b deras rgf e
Obwl'ﬁv D gzﬂ Je. Cg/e,@a.‘w@ L o & lso izr

[ive A /L&/MV?L”//« S me

)@[Ca Avo v OL\/ 0

AV o D7 A=

W x g 4D e
e ~ 6 At |
4D - =2 4V

ot ol X D>




2 4V
JTDL a(j«/
ok D] #‘ﬁ
. 2 S
a/’(”ﬁaw{' ’}“‘n”f = —)——,;(\.Y)Z 2 f(w;w




Related Rates

Brain weight B as a function of body weight W in fish has been
modeled by the power function B = .007 W?2/3 where B and W

are measured in grams.

A model for body weight as a function of body length L (measured
in cm) is W = 12023,

If, over 10 million years, the average length of a certain species of
fish evolved from 15cm to 20cm at a constant rate, how fast was
the species’ brain growing when the average length was 18cm?

[Note: 1 nanogram (ng) = 1077 g.]
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HW14, # 13)

A conical water tank with vertex down has a radius of 11 feet at
the top and is 30 feet high.

If water flows into the tank at a rate of 10 ft3 /min, how fast is the
depth of the water increasing when the water is 18 feet deep?
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Related Rates ‘

A 14 foot ladder is leaning against a wall. If the top slips down the
wall at a rate of 3 ft/s, how fast will the foot be moving away from
the wall when the top is 11 feet above the ground?

_ http://www.ms.uky.edu/"mal37
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Derivatives of Trigonometric Functions

Cyclic phenomena are most easily modeled by sines and cosines:

@ length of day;
@ length of season;
@ some population models (e.g. ideal predator-prey models).

We need to know how fast they change.

Let's compare sin x and cos x:

[ 44
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d ' o '
-—-—-—-——-—smx-cosx - and. = tosX — —smx
dx . dx

We need the trlgonometrlc limits from Sectlon 3 4 to compute the
derivatives of the sine and cosine functions. Namely,

lim —SLhzl and lim cosh— 1 = Q.
h—0 h h—0 h

We also need the addition formulas for sine and cosine

cos(a+p) = cos acos f—sin asin 3 sin(a4/3) = sin a cos f+cos asin 3.

Note that all angles are measured in radians.
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We use the formal definition of derivatives:

d

def

— COS X —

ax

add. form.

http://www.ms.uky.edu/"mal37

. cos(x + h) — cos x
lim
h—0 h
CosS X cos h — sin xsin h — cos x

lim
h—0 h
! cosx (cosh — 1) —sinxsin h
im
h—0 h
_ cosh—1 _ sin h
lim | cos x —sin X ——
h—0 h h
- cosh—1 _ ~sinh
cos x lim —sinx lim
h—0 h h—0 h

cosx-0—sinx-1

—sin X
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Derivatives of Trigonometric Functions

We use the formal definition of derivatives:

d sin X def
dx
add._form.
laws

http://www.ms.uky.edu/"mal37

. sin(x+ h) —sinx
[im
h—0 h
sin xcos h 4+ cos xsin h — sin x

;

hI—TO_ h

. sinx(cosh — 1)+ cosxsinh

lim

h—0 h

_ _ cosh—1 sin h

lim | sin x + cos X —

h—0 h | h

_ - cosh—1 ~sinh

sin x lim + cosx lim ——
h—0 h h—0 h

sinx-0+cosx-1

COS X

......




Derivatives of Trigonometric Functions

The derivatives of the other trigonometric functions can be found

Theory o
gw:azm??g% .

using the following identities and the quotient rule:

sSin X COS X
tan x cot x ,
COS X sin x
1 1
sec x CSCX = —
COS X sin x
d 2 2
For example: . —(tanx) = --- =sec® x = 14 tan“ x.
X
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Examples

Derivatives of Trigonometric Functions

"*Ex'a m el 1:| (Online \om ework HWI15, # 3)

Find the equation of the tangent line to the curve y = 6x cos x at
the point (m, —6).

http://www.ms.uky.edu/"mal37
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(a) Let f(x) = sin3(x). Find f'(x).
(b) Let g(x)=sin(x?). Find g’(x).
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Derivatives of Trigonometric Functions

| o |e : 1 O nline Homework HW15, # )

Find the derivative of the following function:
flx) = cos.(2x)
6 — sin(2x)
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Derivatives of Trigonometric Functions

Examples

(Online Homework HW15, # 8

Find the derivative of the following function:
f(x) = (x> — cos(6x2))5

http://www.ms.uky.edu/“mal37
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Derivatives of Trigonometric Functions

Human heart goes through cycles of contraction and relaxation
(called systoles). During cycles, blood pressure goes up and down
repeatedly; as heart contracts, pressure rises, and as heart relaxes
(for a split second), pressure drops.

Consider approximate function for blood pressure of a patient
mt

P(t) = 100 4 20 cos (%-) mmHg

where t is measured in minutes . Find and interpret P'(t).
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Derivatives of Trigonometric Functions

)nline Homework HW15, # 9)

Duri man female menstrual cycle, the gonadotropin, FSH or
follicle stimulating hormone, is released from the pituitary in a sinusoidal
manner with a period of approximately 28 days.

Guyton's text on Medical Physiology shows that if we define day 0O

(t = 0) as the beginning of menstruation, then FSH, F(t), cycles with a
high concentration of about 4.4 (relative units) around day 9 and a low
concentration of about 1.2 around day 23.

a. Consider a model of the concentration FSH (in relative units) given by
F(t) = A+ Bcos(w(t — ¢)),
where A, B,w, and ¢ (with 0 < ¢ < 28) are constants and t is in

days. Use the data above to find the four parameters.

If ovulation occurs around day 14, then what is the approximate
concentration of FSH at that time?

You should sketch a graph of the concentration of FSH over one period.

b. Find the derivative of F(t). Give its value at the time of ovulation
(t = 14).
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Derivatives of Exponential Functions

The Derivative of the Natural Exponential Function

The function e | /5 differentiable for all X, and g—-e
In particular, if g(x ) is a d/fferentlable funct/on it follows from the
chain rule that |

_5;(_ eg(X) . eg(X) g (x)

We need to know the following limit to compute the derivative of the natural exponential function. Namely,

) el —1
lim
h—0 h

= 1.

Although we cannot rigorously prove this result here, the table below should convince you of its validity

h —0.1 —0.01 —0.001 s 0.001 0.01 0.1

0.9516  0.9950 0.9995 1.0005 1.0050 1.0517

http://www.ms.uky.edu/"mal37
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We use the formal definition of the derivative. In the final step, we
will be able to write the term e* in front of the limit because e*

does not depend on h.

d def
PR e h—
dx
exp._prop.
Ialvs
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o -
dx. |
In partlcular if g(x) is a d/fferent/able functlon it follows from the

cham ru/e that

.V'The"-‘function a5 s differen‘tiab/e for all x, and :

d.
—a

- g0 — 2609 13- g'(x).

We can prove the above result using the definition of the derivative and the limit

ah—l

=In a,
h—0 h

in the same manner that we did for the natural exponential function.

Alternatively, we can use the following identity

and the chain rule. Namely,
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Derivatives of Exponential Functions

Find the derivative of f(x) =e
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—X

Find the derivative with respect to x of g(x) = xe

Evaluate g'(x) at x = 1.
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Derivatives of Exponential Functions

The cutlassfish is a valuable resource in the marine fishing industry
in China. A von Bertalanffy model is fit to data for one species of
this fish giving the length of the fish, L(t) (in mm), as a function
of the age, a (in yr). An estimate of the length of this fish is

[(a) = 593 — 378¢0-160a,

(a) Find the L-intercept.
Find an equation for the horizontal asymptote of L(a).
Find the maximum possible length of this fish.

(b) Determine how long it takes for this fish to reach 90 percent
of its maximum length.

(c) Differentiate L(a) with respect to a.
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Derivatives of Exponential Functions

Radioactive Decay: Show that the function W(t) = Woe™ "
satisfies the differential equation

dW
SS=-W() W)= Wo.

[W is the amount of material at time t = 0 and r is called the radioactive decay rate.]

http://www.ms.uky.edu/ " mal37
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Derivatives of Exponential Functions

ser, Example # 6, p. 181)

Exponential Growth: Show that the function N(t) = Nge™
satisfies the differential equation

dN _
dt

[Np is the population size at time t = 0 and r is called the growth rate.]

N(E)  N(0) = No.
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Derivatives of Exponential Functions

e 6:] (Neuhauser, Pro blem = B3, ’ p. 182)

(a) Find the derivative of the logistic growth curve (Example 3,
Section 3.3, p.112)

K

K
1 — —1]e 11
-|—<NO )e

(b) Show that N(t) satisfies the differential equation
%ﬁf/\/(lmw%) N(O):No

N(t) =

1 dN
(c) Plot the per capita rate of growth ik function of N,

and note that it decreases with increasing population size.
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mic Function E

; oy
— |Inx = —.
: e 2 o dx X

In particular, if g(x) is a differentiable function, it follows from the chain |

rule that

The fun‘ctioh Inx | isdiffer‘entiab/e for‘ all x > 0, and

o In g(X) = ""’(';"5

g (x).

We can use the derivative of €* and the relationship between the
exponential and the natural logarithmic functions to find the derivative of
the function In x. Namely, we start by taking the derivative with respect
to x of both sides of e"* = x. We obtain

d o d d 1

1
In x X
— "= —x <= e"—Ihx=1 <+ —lInx= = —
dx dx dx dx elnx  x




u

.. ) ) ) X
We use the formal definition of the derivative and ¢ = Iim [ 1+ —
U—ro0 U

d n def | In(x + h) — Inx
P X f—
dx h—0 h
In prop. . 1 X+ h
= lim — In
h—0 h X
1 x 1
= im — —=In{ 14+ — = x/h
hl—Toxhn< +x/h) u=x
1 1\"
laws 2 lim In{ 14 —
X u—o0 U
1 | 1\"“
cont ——In[ lim 1+—> }
X u—0o0 U
1 1
— —lne = —
X X
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Derivatives of Logarithmic Functions

garithmic Function

is d/fferentlable for x > 0, and = ———»-]l——
dx - (Ina)x
| ln part:cu/ar if g(x) is a dlfferent/able funct/on lt fo//ows from the cham

rule that

| The funct:on log,, x Iaga X =

- 'O\ga £~ et

g'(x) |

From the base change formula for logarithms we have that

I In x
0g. X = —
a In a

Thus it is enough to find the derivative of Inx. Hence the formula.
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lems # 28/34/52, p. 192

Find == when y = In(1 — x?).
Find — when y = [In(l—x2)]3.

Find — when y =In(Ins).
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Derivatives o

Find = when y = log(3x® — x + 2).
dx

[Note: log = logg]
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Assume that f(x) is differentiable Wlth respect to x. Show that

d {f(x)} )1

f(x) x

X

—In

ax

http://www.ms.uky.edu/ " mal37




&%XV W\e)&wo\ A b Cowyauﬁ/r[“”w M(?/O 7% @ZM

SN "fﬁj/ . - fo
! |

P o S TS R
j?/(od z - f(%) B ,}P//@ _ ,l—
= ~ /ﬁ (9@) /—{Ei)i re

T T T T T Ty T T T e T T g Y T Y T T L T T T T T Ty T T oy T oy Ty Ty Ty T T W o v O YV VT Vv Ty o sy oy



In1695,Leibniz introduced logarithmic differentiation, following
Johann Bernoulli’'s suggestion to find derivatives of functions of the

form
y = [f(x)]".
Bernoulli generalized this method and published his results two

years later.

The basic idea is to take logarithms on both sides
and then to use implicit differentiation.
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Use logarithmic differentiation to find the first derivative of the
functions

3x COS X

y = (Inx) y =x y = (cosx)*
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Use logarithmic differentiation to find the first derivative of the
function

B e?X(9x — 2)°
IRVICEN )

Y
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Solving for dy/dx yields

Proof: We set y = x" and use logarithmic

d
dx
d

dx

y =r—x
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Linear Approximations

Assume that y = f(x) is differentiable at X""‘“ a; then

L(x) - f(a) + f’(a)(x L a)

Geometrically, the linearization of f at x = a is the equation of the
tangent line to the graph of f(x) at the point (a,f(a)).

If |x — al is sufficiently small, then f(x) can be linearly approximated
by L(x); that is, 1 R

f(x)~ f(a)+ f'(a)(x — a).

This approximation is illustrated in the
picture on the right:
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Linear Approximations

(a) Find the linear approximation of f(x) = /x at x = a.

(b) use your answer in (a) to find an approximate value of v/26.
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Linear Approximations

Homework HW1, # 18)

Find the linearization L(x) of the function g(x) = xf(x*) at
x = 2 given the following information:

f2)=1 f(2)=10 f(#)=5 f'(4)=-2 \ \
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Linear Approximations

Plant Biomass: Suppose that a certain plant is grown along a
gradient ranging from nitrogen-poor to nitrogen-rich soil.

Experimental data show that the average mass per plant grown in
a soil with a total nitrogen content of 1000 mg nitrogen per kg of
soil is 2.7 g and the rate of change of the average mass per plant
at this nitrogen level is 1.05x107> g per mg change in total
nitrogen per kg soil.

Use a linear approximation to predict the average mass per plant
grown in a soil with a total nitrogen content of 1100 mg nitrogen
per kg of soil.
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Linear Approximations

Suppose N = N(t) represents a population size at time t and the
rate of growth as a function of N is g(N).

Find the linear approximation of the growth rate at N = 0.

[Hint: We can assume that g(0) = 0. Indeed, when the population has size N = 0, its grow rate will be zero.]

[Remark: Your answer should show that for small population sizes, the population grows approximately exponentially.]
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Linear Approximations

Plant Biomass: Suppose that the specific growth rate of a plant
is 1%; that is, if B(t) denotes the biomass at time t, then

1 dB
B(t) dt

Suppose that the biomass at time t = 1 is equal to 5 grams.

= 0.01

Use a linear approximation to compute the biomass at time t = 1.1.
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Linear Approximations

The tangent linear approximation L(x) = f(a) + f'(a)(x — a) is the

best first-degree (linear) approximation to f(x) near x = a because

f(x) and L(x) have the same value and the same rate of change at a
L(a) = f(a) L'(a) = f'(a).

For a better approximation than a linear one, let's try to find

better approximations by looking for an nth-degree polynomial
T,=co+ci(x—a)+ o(x — a)y> + - + cn(x — a)"

such that T, and its first n derivatives have the same value at

x = a as f and its first n derivatives at x = a.

We can show that the resulting polynomial is

To(x) = F(a) + F(a)x ) +

It is called the nth-degree Taylor polynomial of f centered at x = a

F(7)(a)

n!

(x —a)2+ -+ (x — a)".
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Linear Approximations

cosx centered at

Consider the graph of the polynomial

. | . X2 N . 4 2(n—1) 1y x2n
wl) =1-gr+gr =D (2n—2)'+( ) (2n)!

As n increases, the graph of T,,(x) appears to approach the one of cos x.

This suggests that we can approximate cos x with Tan(x) as n — o0.
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Linear Approximations

Consider the graph of the polynomial

3 x5 | x2n-l S2ntl
Ton —X— — 4+ — — -+ (—1)" —1)" :
2ni1(X) =X = 37 T D" gy ) Znr D)
As n increases, the graph of T, 1(x) appears to approach the one of
sin x. This suggests that we can approximate sin x with Toni1(x) as n — oo.
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2 X3

Consider the graph of the polynomial

X
To(x)=1dx+p+ 7+ +

X4

(=11

As n increases, the graph of T,(x) appears to approach the one of &~

This suggests that we can approximate e* with T,(x) as n — oo.
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Linear ApprOXimations

Google parent Alphabet Inc. reached a record share price a day
after reporting better-than-projected quarterly revenue and profit
fueled by increased ad sales and a tighter lid on costs. [...] The
actual figure that the company announced for the share buyback
was unusually specific: $5,099,019,513.59. Turns out, those
numbers correspond to the square root of 26, or the number of
letters in the English alphabet.

Let f(x) = +/x and a = 25. The 5th-degree Taylor polynomial of f centered at 25 can be shown to be

1 1 2 3 1 4 1 5
Te(x) =54+ —(x—25)— x —25)" + x—25)Y — ————(x—2b) + x —25
5(2) 10( ) 1,000( ) 50,000( ) 2,000,000( ) 71,428,571.43( )
We can then check that
1 1 1 1 1
V26 ~ T5(26) =5+ — — -+ + = 5.099019514

10 1,000 @ 50,000 2,000,000 71,428,6571.43

This means that we overestimated Alphabet Inc. buyback by 41¢.
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