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Extrema and The Mean Value Theorem

Finding the largest profit, or the smallest possible cost, or the
shortest possible time for performing a given procedure or task are
some examples of practical real-world applications of Calculus.

The basic mathematical question underlying such applied problems
is how to find (if they exist) the largest or smallest values of a
given function on a given interval.

This procedure depends on the nature of the interval.

' The largest value a function (possibly) attains on an nterval is
called its global (or absolute) maximum value. ‘

The smallest value a function (possnbly) attains on an mterval is
called its global (or absolute) minimum value.

:Both maximum and minimum values (|f they eXISt) are called
global (or absolute) extreme values |




Find the maximum and minimum values for the function
f(x) = (x —1)* =3, if they exist.

http://www.ms.uky.edu/“mal37

e T T A R Y T g Y T Y Y Y Y T Y YT T T T T T T T T T T T T T T Ty T T YT T T T T T T Y R T T O O OO T TR Y




s
e
| oh
/L/t CE?'\WMW %M no
T+ R b ) N
M M ‘A e
(AY.EQAA IRANER G gV 2=
A(‘{AL /\y&/\—w N Jg—g
) B | . ke S
gt .
mﬂ(/a

( \\)@'HQ)\ M
’PG\\\J(' w%% e
’J[\/(x> =@/0 WQ/&@DO’HOL,
- Lo
) .




Extrema and The Mean Value Theorem

Find the maximum and minimum
values for the function f(x) = —|x —2| 43, if they exist.
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Find the maximum and minimum values for the function
f(x) =x*+1, x € [-1,2]
if they exist.

......................
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Extrema and The Mean Value Theorem

We first focus on continuous functions on a closed and bounded interval.

The question of largest and smallest values of a continuous function f on an interval that is not closed and
bounded requires us to pay more attention to the behavior of the graph of f, and specifically to where the graph is

rising and where it is falling.

An mterval‘ls closed and bounded if it has fmlte Iength and
‘contams |ts endpomts

If a function f is continuous on a closed, bounded interval |a, b],
then the function f attains a global maximum and a global
minimum value on [a, b].

http://www.ms.uky.edu/~“mal37




Extrema and The Mean Value Theorem

[ 2+ X if x >0
Let £(x) = 2 4+ +/—x if x <0.

Does f(x) have a maximum and a minimum value on [~3,4]7
How does this example illustrate the Extreme Value Theorem?

.
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Extrema and The Mean Value Theorem

1
Let g(x) = —. Does g(x) have a maximum value and a minimum
X

value on [—2,3]? Does this example contradict the Extreme Value
Theorem? Why or why not? | A

...................

...................
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Extrema and The Mean Value Theorem

Let h(x) = x* —2x2 + 1. Does h(x) have a maximum value and a
minimum value on (—1.25,1.5)7? Does this example contradict the
Extreme Value Theorem? Why or why not?

http://www.ms.uky.edu/~“mal37
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Extrema and The Mean Value Theore

ell you how
locate the maximum and minimum values of f.

We need to narrow down the list of possible points on the given
interval where the function f might have an extreme value to
(usually) just a few possibilities. You can then evaluate f at these
few possibilities, and pick out the smallest and largest value.

For this we need to discuss local (or relative) extrema, which are
points where a graph is higher or lower than all nearby points.

A function f has a local (or relative) maximum at a point
(c, f(c)) if there is some interval about ¢ such that f(c) > f(x)
for all x in that interval. A function f has a local (or relative)
minimum at a point (c, f(c)) if there is some interval about ¢
such that f(c) < f(x) for all x in that interval.
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Extrema and The Mean Value Theorem

global max

local max

local_max . |
local min |

local max

local min

><V

global min

If you thought of the graph of the function as the profile of a
landscape, the global maximum could represent the highest hill in the
landscape, while the minimum could represent the deepest valley.
The other points indicated in the graph, which look like tops of hills
(although not the highest hills) and bottom of valleys (although not

the deepest valleys), are the local (or relative) extreme values.

http://www.ms.uky.edu/”"mal37




Extrema and The Mean Value Theorem

ThlS results prowde the followmg guidelines for finding candldates
for local extrema:

Let x) be a cont/nuous funct/on on the c/osed, bounded interval
[a, b]. If f has an extreme value at c in the interval, then either

o,c_aWC~b | |
e a<c<bandf'(c)=0, .
e a<c<b andf’ is not‘ def/ned at x=c c | v E

S i e m«:«»«‘“

Remark If f is defmed at the point x = ¢ and e|ther f'(c) =0 or
f’(c) is undefined then the point c is called a critical point of f.
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Extrema and The Mean Value Theorem

Find the maximum and minimum values of
f(x) =x3>—3x>—9x+5 on the interval [0,4]. For which values

x are the maximum and minimum values attained?

http://www.ms.uky.edu/ mal37
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Extrema and The Mean Value Theorem

fomenr HWT 1)

Find the maximum and minimum values of  f(x) = P 1 on

the interval [—4,0]. For which values x are the maximum and
minimum values attained?

http://www.ms.uky.edu/”"mal37
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7 Extrema and The Mean Value Theorem

Find the maximum and minimum values of  f(x) = x2/3  on
the interval [—1, 8]. For which values x are the maximum and

minimum values attained?

http://www.ms.uky.edu/”"mal37
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Extrema and The Mean Value Theorem

Find the t values on the interval [—10, 10] where
g(t) =|t—4|+7 takes its maximum and minimum values.

What are the maximum and minimum values?

http://www.ms.uky.edu/ mal37
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Extrema and The Mean Value Theorem

Find the absolute maximum and minimum values of the function
10 cos x
f(x) = .
4 4 2sin x
over the interval [0, 27]. If there are multiple points in a single
category list the points in increasing order in x value.
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The Mean Value Theorem
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The Mean Value Theorem

The Mean Value Theorem is a very important in calculus. Its
consequences are far reaching, and we will use it to derive
important results that will help us to analyze functions.

If f is continuous on the closed interval [a, b] and differentiable on
the open interval (a, b) then there eXISts at /east one number

,c = (a, b) such that |

b
PR, : L
e |

e m“ AeHnE G L e s D G G e

Geometrically, it says that there exists a point P(c,f(c)) on the
graph where the tangent line at this point is parallel to the secant

line through A(a, f(a)) and B(b, f(b)).

The MVT is an “existence” result: It tells us neither how many

such points there are nor where they are in the interval (a, b).
http://www.ms.uky.edu/~mal37




The Mean Value Theorem

X a c1 o)) b X

The proof of the MVT is typically done by first showing a special
case of the theorem called Rolle’s Theorem.
You can read its proof on p. 211 of the Neuhauser book.

f f is continuous on the closed mterva/ [a b] and differentiable on
the open interval (a b), and if f(a) = - f(b), then there ex15t5 a
| number ce (a b) such that f’(c): 0. o |




The Mean Valrue’Theor'em ‘

The MVT follows from Rolle’s theorem and is a “tilted” version of that theorem. The secant and tangent lines in

the MVT are no longer necessarily horizontal, as in Rolle's theorem, but are “tilted”; they are still parallel, though.

Proof of the MV T: We define the following function:
f(b)—f (a)(
b— a

The function F is continuous on [a, b] and differentiable on (a, b).
Furthermore, F(a) = f(a) = F(b). Hence, we can apply Rolle’s theorem
to the function F(x). There exists a ¢ € (a, b) with F'(c) = 0. Since

F(x) = f(x) — X — a).

f(b) — f(a)
F/ — / L
() = F/(x) - = —
it follows that, for this value of c,
0= F/(C) = f,(C) — f(bg: :(8)
and hence
f(b) — f(a)

http://www.ms.uky.edu/~“mal37




The Mean Value Theorem

Graph the function f(x) = x> —2x and its secant line through
the points (—2,—4) and (2,4) . Use the graph to estimate the
x-coordinate of the points where the tangent line is parallel to the

secant line.

Find the exact value of the numbers ¢ that satisfy the conclusion
of the Mean Value Theorem for the interval [-2,2].

http://www.ms.uky.edu/"mal37
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The Mean Value Theorem

Find all numbers ¢ that satisfy the conclusion of Rolle’s Theorem
for the following function |

f(x) =9xvx+2

on the interval [—2,0].







The Mean Value Theorem

Consider the function f(x) = 3 — 3x%/3 on the interval [-1,1].
Which of the three hypotheses of Rolle’'s Theorem fails for this
function on the interval?

(a) f(x) is continuous on [—1,1].
(b) f(x) is differentiable on (—1,1).
(c) f(=1)=f(1).

http://www.ms.uky.edu/”mal37



pa
f(=3-32"

% (S Conbhruows on ["‘/ lij
* D= p0 = o

X ’B:_:wf ’JE)(I) 'S not cbtfecatalte al z=o

% -

w fact  Playe -z 22,k




The Mean Value Theorem

We discuss two consequences of the MVT.

The first corollary is useful in obtaining information about a function on
the basis of its derivative. The importance of the second corollary will

become more apparent in Example 7 and Section 5.8.

If f is continuous on the closed interval [a, b] and differentiable on

ythe open interval (a, b) such that i
m < f’(x) < M ' ,.for all xe&(a,b)

M(b ;a)‘

then , ;
. —a) < f(b) - f(a) <

»~If f is contlﬁn\uous on the closed interval a b] and differentiable on
the open interval (a, b), vvlth f'(x) =0 for all x € (a, b) then f is
constant on [a b]
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The Mean Value Theorem

Suppose f(x) is continuous on [3,5] and
—5 < f(x) <2

for all x in (3,5).
Use the Mean Value Theorem to estimate f(5) — f(3).

http://www.ms.uky.edu/~“mal37
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The Mean Value Theorem

Denote the population size at time t by N(t), and assume that
N(t) is continuous on the interval [0,10] and differentiable on the

dN
interval (0,10) with N(0) = 100 and ‘?a’—t— < 3 for all t € (0,10).

What can you say about N(10)?

http://www.ms.uky.edu/ " mal37
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The Mean Value Theorem

omework ” \/\/7’ " 15)

 Let f(x) = 8sin(x).
(@) If'(x)] < —
(b) By the Mean Value Theorem,

f(b) — f(a)] < la— b

for all a and b.

[ Remark: This problem is also a variation of Example 9, Neuhauser, p. 212]

http://www.ms.uky.edu/ " mal37
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~_ The Mean Value Theorem

df
We have seen that f(x) = foe™ satisfies the differential equation o= r f(x) with £(0) = fp.
x

This exercise will show that f(x) is in fact the only solution.

Suppose that r is a constant and f is a differentiable function with

df
&= () (1)
for all x € R, and f(0) = fy. The following steps will show that

f(x) = foe™, x € R, is the only solution of (1).

(a) Define the function F(x) = f(x)e™™, x € R. Use the product
rule to show that F/'(x) = e~ ™[f'(x) — rf(x)].

(b) Use (a) and (1) to show that F'(x) = 0 for all x € R.

(c) Use Corollary 2 to show that F(x) is a constant and, hence,
F(x) = F(0) = f.

(d) Show that (c) implies that fo = f(x)e™"™ and therefore,

f(x) = foe™.

http://www.ms.uky.edu/”"mal37
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Monotonicity and Concavity

c ""easmg?.Funct»lons

A function f is said to be increasing when its graph rises and decreasing
when its graph falls. More precisely, we say that

.(strlctly) increasing on an mterval [ if

f(xi) < f(x2) whenever x1 < xin /
fis (strlctly) decreasmg on an mterval il |f *

f(x2) f(x1)
f(x1) f(x2)

0 X1 X2 0 X1 X2

f is increasing f is decreasing

http://www.ms.uky.edu/“mal37




Monotonicity and Concavity

nples

| S f‘quonotommtyw

and differentiable on (a, b).

'[av b]
() IfFf(x) > 0 for all x € (a, b), then-fis"increasing:,oh [a, b].
(b) Iff'(x) <0 for all x € (a,b), then f is decreasing on |

Suppose f is continuous on

[aa'b]?" "

Proof: Suppose f/(x) > 0 on an interval /. We wish to show that f(x;) < f(x2) for any pair x; < x in [a, b].

Let x; and xo be any pair of point in [a, b] satisfying x; < x2. Then f is continuous on [x1, x2] and differentiable
~on (x1, x2). We can therefore apply the MVT to f defined on [x1, xo]: There exists a number ¢ € (x7, x2) such that

Now, f/(c) > 0 as ¢ € [x1, x2] C [a, b]; so
f(xo) — f(1)

X2 — X1

>0

so f(xp) — f(x1) > 0, since xp — x; > 0. Therefore, f(x1) < f(x2).
Because x; and xo are arbitrary numbers in [a, b] satisfying x; < xp, it follows that f is increasing on the whole interval.

The proof of part (b) is similar.

http://www.ms.uky.edu/"mal37
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e
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(b) Local minimum

-

(a) Local maximum
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Monotonicity and Concavity

"The second derivative can also be used to help sketch the graph of a
function. More precisely, the second derivative can be used to determine
“when the graph of a function is concave upward or concave downward.

The graph of a functlon y = f(x) is concave upward on an mterval ,
[a, b] if the graph lies above each of the tangent lines at every point in
the interval [a, b]. The graph of a function y = f(x) is concave |
downward on an interval [a, b] if the graph lies below each of the
tangent Imes at every pomt in the interval [a, b] |

a b X a b X

graph of function concave upward on [a, b] graph of function concave downward on [a, b]

http://www.ms.uky.edu/“mal37




Monotonicity and Concavity

Consider a function f(x).

If £7(x) > 0 over an interval [a, b], then the derivative f'(x) is
increasing on the interval [a, b]. That means the slopes of the
tangent lines to the graph of y = f(x) are increasing on the
interval [a, b]. From this it can be seen that the graph of the
function y = f(x) is concave upward.

If f”(x) < 0 over an interval [a, b]. Then the derivative f'(x) is
decreasing on the interval [a, b]. That means the slopes of the
tangent lines to the graph of y = f(x) are decreasing on the
interval [a, b]. From this it can be seen that the graph of the
function y = f(x) is concave downward.

http://www.ms.uky.edu/“mal37
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o If f'(c)=0 and f”(c) < 0, then f hasa /ocal max atx = c

@.Iff’(c) =0 and f”'(.c)'>~0 then f has a local min. at x = c.

Concave down

Concave up

(o) X C X

f has a local max at ¢ f has a local min at ¢
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Monotonicity and Concavity

‘A point (¢, f(c)) on the graph is called a point of inflection if the |

graph of y = f(x) changes concavity at x = c. Thatis, ifthe |
graph goes from concave up to concave down or from concave
”down to concave up | '

If (c, f(c)) is a point of inflection on the graph of y = f(x) and if
the second derivative is defined at this point, then f”(c) = 0.

Thus, points of inflection on the graph of y = f(x) are found
where either f”(x) = 0 or the second derivative is not defined.

However, if either f”/(x) = 0 or the second derivative is not
“defined at a point, it is not necessarily the case that the point is a
point of inflection. Care must be taken.

http://www.ms.uky.edu/ " mal37




Monotonicity and Concavity

Using the first and the second derivatives of a twice-differentiable
function, we can obtain a fair amount of information about the function.

We can determine intervals on which the function is increasing,
decreasing, concave up, and concave down. We can identify local
and global extrema and find inflection points.

To graph the function, we also need to know how the function
behaves in the neighborhood of points where either the function or
its derivative is not defined, and we need to know how the function
behaves at the endpoints of its domain (or, if the function is
defined for all x € R, how the function behaves for x — +00).

A line y = b is a horizontal asymptote if either

lim f(x)=0>b or lim f(x)=0b
X—>—+00 X—r—00
A line x = c is a vertical asymptote if
lim f(x) =+o0 or lim f(x) = toc0

x—ct X—C~

http://www.ms.uky.edu/ " mal37




Monotonicity and Concavity

Find the intervals where the function f(x) =x3 —3x*+1 s
increasing and the ones where it is decreasing. Use this
information to sketch the graph of  f(x) = x> — 3x* + 1.

http://www.ms.uky.edu/"mal37
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4
Llet f(x)= ~ j; - Find the intervals over which the function
X
IS Increasing.
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Monotonicity and Concavity -

Let h(x) = x?e™*.

(a) On what intervals is h increasing or decreasing?

(b) At what values of x does h have a local maximum or minimum?
(c) On what intervals is h concave upward or downward?

(d) State the x-coordinate of the inflection point(s) of A.

(e) Use the information in the above to sketch the graph of h.
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Monotonicity and Concavity

2

Find the inflection points of the function g(x) =e .
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Monotonicity and Concavity

Suppose  g(x) = o . Find the value of x in the interval
X

[3, +00) where g(x) takes its maximum.
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Monotonicity and Concavity

Let f(x) = In(x? + 1). You are given that
N 2X e N 2— 2x?
f(x)—X2Jr1 and 7 (x) = R

(a) On what intervals is f increasing or decreasing?

(b) At what values of x does f have a local maximum or minimum?
(c) On what intervals is f concave upward or downward?

(d) State the x-coordinate of the inflection point(s) of f.

(e) Use the information in the above to sketch the graph of f.
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Monotonicity and Concavity

The graph of the derivative f" of a function f is shown.

(a) On what intervals is f increasing or decreasing?

(b) At what values of x does f have a local maximum or minimum?
(c) On what intervals is f concave upward or downward?

(d) State the x-coordinate of the inflection points of f.

A
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Monotonicity and Concavit

Suppose that on the interval I, f(x) is positive and concave up.
Furthermore, assume that ”/(x) exists and let g(x) = (f(x))?. Use
this information to answer the following questions.

(a) "(x) > on /.

(b) g”(x) = 2(A? + Bf""(x)), where A = and B=__
(c) g’(x) > on /.
(d) g(x)is on |.
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Optimization

Alberto Corso
(alberto.corso@uky.edu)
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Optimization

There are many situations in which we wish to maximize or
minimize certain quantities. For instance,

o in a chemical reaction, you might wish to know under which
conditions the reaction rate is maximized:

@ in an agricultural setting, you might be interested in finding the
amount of fertilizer that would maximize the yield of some crops;

@ in a medical setting, you might wish to opt|m|ze the dosage of
a drug for maximum benefit;

@ optimization problems also arise in the study of the evolution
of life histories and involve questions such as when an
organism should begin reproduction in order to maximize the
number of surviving offspring.

In each case, we are interested in finding global extrema.
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Optimization

The most important skill in solving a word problem is reading
comprehension. The most important attitude to have in

attacking word problems is to be willing to think about what you are
reading and to give up on hoping to mechanically apply a set of steps.

MAX-MIN PROBLEMS

All max-min problems ask you to find the largest or smallest value
of a function on an interval. Usually, the hard part is reading the
English and finding the formula for the function. Once you have
found the function, then you can use the techniques from Sections
5.1, 5.2, and 5.3 to find the largest or smallest values.

http://www.ms.uky.edu/“mal37




Optimization

Nevertheless — despite our previous remarks — we will present some useful
strategies to employ that are often helpful.

1. Read the problem

2. Define your variables. If possible, draw a picture and label it.

3. Determine exactly what needs to be maximized or minimized.

4. Write the general formula for what you are trying to maximize or

minimize. If this formula only involves one variable, then skip to step 8.
Find the relationship(s) (i.e., equation(s)) between the variables.
6. Do the algebra to solve for one variable in the equation(s) as a
function of the other(s).
7. Use your formula from step 4 to rewrite the formula that you want
to maximize or minimize as a function of one variable only.
8. Write down the interval over which the above variable can vary, for
the particular word problem you are solving.
0. Take the derivative and find the critical points.
. Use the techniques from Chapter 5 to find the maximum or the minimum.

e
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Optimi‘zation

Find the dimensions of an open rectangular box with a square base
that holds 7000 cubic cm and is constructed with the least building

“material possible.
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B = We  Buso ok :tlg —_ 2053}
H@mw | _ +F0o0 J
xL

Tl leox Quon o ”“DF ol we yeed 4o WCW’{M"'% 1o

(g\)\/\%ﬂu OSSO 1.
< - 4= ~ = feo




B
2 x — 2¢&,000

<X < ~ Z

- |
2x - 28,900 = © = == [, oo

S(x)=0 &
3
= = =, /i4000 = 94.10|

———

%ZM %S/(x) el S e sl il

O 24 oy

Hew ce >(x) s y&mm’n/ @ff@» 24, (o7
\ e S Zq,/m, Hewvee e unéw/ »2@(0(?

nt uf a /Zoc,o/@ At $Hace Hen (/ e,




Optimization

A fence is to be built to enclose a rectangular area of 230 square
feet. The fence along three sides is to be made of material that
costs 3 dollars per foot, and the material for the fourth side costs
13 dollars per foot. Find the dimensions of the enclosure that is
most economical to construct.
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- Optimization

A rectangle is inscribed with its base on the x-axis and its upper
corners on the parabola y = 11 — x?. What are the dimensions of
such a rectangle with the greatest possible area?
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Optimization

A cylinder is inscribed in a right circular cone of height 6 and
radius (at the base) equal to 2.5. What are the dimensions of such
a cylinder which has maximum volume?
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Optimization

Find the maximum area of a triangle formed in the first quadrant
by the x-axis, y-axis and a tangent line to the graph of

f(x) = (x+1)"2
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Optimization

Let Y(N) be the yield of an agricultural crop as a function of
nitrogen level N in the soil. A model that is used for this
relationship is

N
1+ N2
(where N is measured in appropriate units). Find the nitrogen level
that maximizes vyield.

Y(N) = for N >0
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Optimization

Suppose that a patient is given a dosage x of some medication,
and the probability of a cure is |

Px) = VX

14+ x

What dosage maximizes the probability of a cure?
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Optimization

In a beehive, each cell is a regular hexagonal prism, open at s hedra
one end with a trihedal angle at the other end. It is believed

that bees form their cells in such a way as to minimize the
surface area for a given volume, thus using the least amount
of wax in cell construction. Examination of these cells has
shown that the measure of the apex angle 6 is amazingly

front

consistent. s of cell
Based on the geometry of the cell, it can be shown that the surface area
S is given by |

3, 3V3

— 6sh — > —
S =6s 25 cotd + > s“csch

where s, the length of the sides of the hexagon, and h, the height, are
constants.

(a) Calculate dS/d6.
(b) What angle should bees prefer (in radians)?

(c) Determine the minimum surface area of the cell.
http://www.ms.uky.edu/“mal37
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Optimization

One question for fishery management is how to control fishing to optimize profits for the fishermen. One DE
describing the population dynamics for a population of fish F with harvesting is given by the equation,

dF F
— :rF(l— ——) — xF
dt K

where r is the growth rate of this species of fish at low density, K is the carrying capacity of this population, and x
is the harvesting effort of the fishermen. The non-zero equilibrium of this equation is given by

(r=x)

r

Fe:K

One formula for profitability is computed by the equation

P(x) = xF. = Kxﬁ-—}@.
Find the level of harvesting x that produces the maximum profit

possible Xmax with this dynamics.
What is the equilibrium population Fe at this optimal profitability?

Also, determine the maximum possible fish population for this
model and at what harvesting level this occurs.
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ptimization

[From: D. ’A. Roff, The Evolution of Life Histories, Chapman and Hall, 1992.]

Semelparous organisms breed only once during their lifetime.
Examples of this type of reproduction strategy can be found with
Pacific salmon and bamboo. The per capita rate of increase, r,
can be thought of as a measure of reproductive fitness. The
greater r, the more offspring an individual produces. The intrinsic
rate of increase is typically a function of age, x. Models for
age-structured populations of semelparous organisms predict that
the intrinsic rate of increase as a function of x is given by

) — MILCOME)]

X

where L(x) is the probability of surviving to age x and M(x) is the
number of female births at age x. Suppose that

L(x)=e % and M(x) = 3x°".

Find the optimal age of reproduction.
http://www.ms.uky.edu/“mal37
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L’'Hopital’s Rule

We have often encountered the situation in which we had to compute

f(x)

lim

and we had that both the following limits were zero
X—ra g(x)
>|<I—Ta f(x)=0 and )I(Lnag(x) = 0.

Using a linear approximation at x = a, we find that, for x close to a
f(x) _ f(a)+f'(a)(x - a)
g(x)  gla) +g'(a)(x —a)

Since f(a) = g(a) = 0 and x # a, the right-hand side is equal to

f'(a)(x—a) _ f'(a)
g'(a)(x—a) ¢g'(a)
provided that f'(a)/g’(a) is defined. We therefore hope that something like

i 0 _ 1102
—ag(x)  g'(a)
holds when f(a)/g(a) is of the form 0/0 and f'(a)/g’(a) is defined. In

fact, something like this does hold; it is called I'Hopital’s rule
http:/ /www.ms.uky.edu/“mal37 |




L'Hopital’s Rule

“Suppose that f and g are diffrentiabl functions and that

im f(x) = 0= lim g( ) or lim f(x) =00 = - Ilm g(x)

x—>a X—a , L ‘ - X—a X—a

‘, Then

Tim —@ lim f,(X)
xoag(x)  x—agl(x)

prov:ded the second l/m/t eXISts |

L'Hépital’s rule can actually be applied to calculate limits for seven
kinds of indeterminate expressions

0
— > 000 00 — 00 oY
0 o0

(Note that I'Hépitals rule works for a = 400 or —oo as well.)

1°° ooV
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L'Hopital’s Rule

0 - co Suppose we have to compute Xll_nga f(x)g(x) where Xlina f(x) = 0 and Xlﬂﬁag(x) = co. To apply

I'Hopital’s rule to this kind of limit write it in one of the two forms

. . f(x) o g(x)
Iim f(x)g(x) = lIim = lim
X—ra ( )g( ) X—>a l/g(x) X—ra ]_/f(x)

In the first case the ratio is 0/0, whereas in the second case the ratio is co/oo. Usually only one of the

two expressions is easy to evaluate.

oo — oo Suppose we have to compute Xlgg[f(x) — g(x)] where lega f(x) = oo and Xh_Tag(x) = oo. To apply

I'Hépital's rule to this kind of limit write it in one of the two forms

lim [F(x) — g(x)] = lim_f(x) (1 - 599) = lim g(x)<£(—’2 - 1)

xX—+a f(X)

and hope that the limit is of the form 0 - co.

0° 1°° ¥ Suppose we have to compute XITQ [f(x)]g(x), which becomes of the form 0%, 1% or co®. The key to
a

solving these limits is to write them as exponentials

lim [F(x)]E) = lim_exp { In [f(x)]g(")} = lim_exp {g(x) “In f(x)} — exp [ Jlim_(g(x) - In f(x))] .

X—ra

The last step, in which we interchanged lim and exp, uses the fact that the exponential function is continuous.
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~ L’Hépital’s Rule

 x2 -9
Evaluate I|im ——.
Xx—3 X — 3

~~~~~~~~
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L'Hépital's Rule
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L'Hopital’s Rule

1 — cos x

Evaluate |im 5
x—0 X
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Evaluate Im x-e
X—>00

What about  lim x'*.e > ? (Online Homework HW20, # 5)

X—00
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~ L'Hépital’s Rule

Evaluate lim 7+/x - Inx.

x—0t
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pital’s Rule

Evaluate |lim x — v/ x2 + x.

X—>00

http://www.ms.uky.edu/ " mal37
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L'Hopital’s Rule

X—>00 X

X
) where ¢ Is a constant.

Use |I'Hopital’s rule to find  lim (

What about  lim 3x(In(x +3) —Inx) 7 (Online Homework HW?20, #

X—>00
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Difference Equations: Stability
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Difference Equations: Stability

In Chapter 2 we saw that an important biological application of
sequences consists of models of seasonally breeding populations with
nonoverlapping generations where the population size at one generation
depends only on the population size of the previous generation.

The discrete exponential growth model fits into this category.

To this end, we introduced first-order recursions [= difference equations
or iterated maps| by setting

X1 = f(x),  t=0,1,2,...

where f(x) is a function (= updating function) that describes the density
dependence of the population dynamics.

The name difference equation comes from writing the dynamics in the form
Xt41 — Xt (x¢)
tr—t &V

[where g(x) = f(x) — x|, which allows us to track population size changes from one time step to the next.

The name iterated map refers to the recursive definition.
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- Difference Equations: Stability

In Chapter 2, we were able to analyze difference equations only
numerically (except for equations describing exponential growth,
which we were able to solve).

We saw that fixed points (or equilibria) played a special role.

A fixed point X satisfies the equation
| x = f(X)
and has the property that if xp = X, then x; = X for t =1,2,3,....

We also saw in a number of applications that, under certain
conditions, x; converged to the fixed point as t — oo even if xp # X.

However, back in Chapter 2, we were not able to predict when
such behavior would occur.
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Difference Equations:b‘SVtébi'Iity

cmple # 1. .

Find the equilibria of the recursive sequence

1 5,
= — — — t=20,1,2,...
Xt+1 A 4t7 5 Ly &y

What happens to x; as t — oo if xp = —0.9 7

(You could use for example an Excel spreadsheet.)

http://www.ms.uky.edu/"mal37




| c S
&tﬂzzr_—-—zxt
TO ?‘N\OL ‘L‘Qd\l /EQ)CQ,O( ’anl'g e }D %&L
’ _ 1 _5 = : ¥
X T 4 Zx —— 4 x =] —S2 P
S +4x — 1 =o0
We com frctn O oas: (Ex )(F ) =

| PN _—
A = /5’ ML %2-:'_‘( J
s 2
No%c& %a)t :tt*/:Z,L“Z’Cc
z‘?(“t)
N‘%\SLAL /\%,——




Ly,

L= Xy
‘a/vcu(aem c Wl&(’%%m

5 - Ogﬁx(e,e(
?m‘m[?




Difference Equations: Stability

Expohential growth in discrete time is given by the recursion
Nii1 = R Ny, t=0,1,2,...

where N; is the population size at time t and R > 0 is the growth rate.

We assume throughout that Ny > 0, which implies that N; > 0.

The fixed point of our recursion can be found by solving N = R V.

The only solution of this equation is N =0, unless R = 1.
If R =1, then the population size never changes, regardless of Np.

What happens if we start with N > 0 and R # 17

In Chapter 2, we found that
Nt — N()Rt
is a solution of our recursion. Using this fact, we concluded that

0 if 0<R<I1
00 it R>1,

Nt—>{

as t — OQ.
http://www.ms.uky.edu/ "mal37




Difference Equations: Stability

We can interpret the behavior of N; as follows:

If0 < R < 1and Ny > 0, then N; will return to the equilibrium N = 0;

P

if R > 1 and Ny > 0, then N; will not return to the equilibrium N=20
(more precisely, if R =1, Ny will stay at Np; if R > 1, N will go to 00).

We say that N = O is stable if 0 < R < 1 and unstable if R >1

The case R e 1 IS called neutral, since, no matter What the value
ofN0|s~Nt—Nofort:123 L f . i

http://www.ms.uky.edu/“mal37




Difference Equations: Stability

We can determine graphically whether a fixed point is stable or unstable.

The fixed points of exponential growth recursive sequence are found
graphically where the graphs of N;1; = RNy and N1 = N; intersect.

We see that the two graphs intersect where N; = 0 only when R # 1.

We can use the two graphs on the left to follow
successive population sizes. Start at Ny on the
horizontal axis. Since Ny = RNy, we find N; on the
vertical axis, as shown by the solid vertical and
horizontal line segments. Using the line N1 = N,
_ we can locate Ny on the horizontal axis by the
¥ dotted horizontal and vertical line segments.
Using the line Ny 1 = RN; again, we can find N, on the vertical axis, as
shown in the figure by the broken horizontal and vertical line segments.

Using the line Ny1 = N; once more, we can locate N, on the horizontal axis
and then repeat the preceding steps to find N3 on the vertical axis, and so on.

Nt

T

Ny N, Ny

This procedure is called cobwebbing.

http://www.ms.uky.edu/~“mal37
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Difference Equations: Stabili

{
AR
ﬁrﬁ .QHJE h{z 1’\{3 f\)’i

In the figure on the left, R > 1, and we see that if N > 0, then
N, will not converge to the fixed point N = 0, but instead will move
away from 0 (and, in fact, will go to infinity as t tends to infinity).

In the figure on the right, 0 < /i< 1, we see that if Np > 0, then
N; will return to the fixed point N = 0.
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Difference Equations: Stabi'lify :

The general form of a first-order recursion is
xer1 = F(x¢), t=20,1,2,...
We assume that the function f is differentiable in its domain.

@ To find fixed points algebraically, we solve x = f(x).
@ To find them graphically, we look for points of intersection of
the graphs of x;11 = f(x¢) and x¢41 = X¢.

The graphs in the picture intersect more than once, which means
that there are multiple equilibria. We can use the cobwebbing
procedure from the previous subsection to
Lo »=ff;r;} graphically investigate the behavior of the
difference equation for different initial values.

PR

Two cases are shown in the picture, one starting
at xp.1 and the other at xp>. We see that x;
converges to different values, depending on the

E initial value.

.
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Difference Equations: Stability

To determine the stability of an equilibrium — that is, whether it is
stable or unstable — we will start at a value that is different from the
equilibrium and check whether the solution will return to the equilibrium.
We allow only initial values that are close to the equilibrium (we call it a
small perturbation). The reason for looking only at small perturbations
is that if there are multiple equilibria and if we start too far away from
the equilibrium of interest, we might end up at a different equilibrium,
not because the equilibrium of interest is unstable, but simply because we
are drawn to another equilibrium.

If we are concerned only with small perturbations, we can approximate
the function f(x) by its linearization at the equilibrium X. Since the slope
of the tangent-line approximation of f(x) at X is given by f'(x), we are
led to the following criterion,




Difference Equations: Stability

We look at the linearization of f(x) about the equilibrium x and
investigated how a small perturbation affects the future of the solution.
We denote a small perturbation at time t by z; and write

Xt = 5(\ —+ Zt
Then Xt+1 — f(Xt) = f()?—f— Zt)

Now, the linear approximation of f(X + z;) at X is L(X + z;) = f(X) + '(X) z:.
Taking this into account, we can approximate Xq1[= X + Z¢11] by

X+ zep1 ~ F(X) + F(X) z¢.
Since f(X) = X (X is an equilibrium), we find that
zep1 = F(X) ze
This approximation reminds of the equation y;1 = R y; for exponential
growth, where we identify y: with z; and R with f/(x). Since the solution
of yer1 = Ry is vy = yoR" and Rt — 0 as t — oo for |[R| < 1, we obtain
the criterion |f/(X)| < 1 for local stability. That is, if |f'(x)[ < 1, then the

perturbation z; will converge to z = 0 or, equivalently, x; — X as t — oo.
http://www.ms.uky.edu/ "mal37




Difference Equations: Stability‘

Use the stability criterion to characterize the stability of the
equilibria of

Xt41 —
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Difference Equations: Stability

We know from the Stability Criterion that when the slope of the
tangent line to f at the equilibrium X is between —1 and 1, x;
converges to the equilibrium X.

The solution x; approaches the equilibrium in a spiral (thus
exhibiting oscillatory behavior) when the slope of the tangent line
at the equilibrium is negative, whereas it approachesit in one
direction (thus exhibiting nonoscillatory behavior) when the
slope of the tangent line at the equilibrium is positive.

Net Npa A RIS

X, A -
{1+ " —
X =x S

&
v =y
f Nl T N

a+

~ B ~
Xy X ! Xy X

(a) Stable spiral (b) Unstable spiral Xy ooa Xy
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Difference Equations: Stability

er, Example #

Use the stability criterion to characterize the stability of the
equilibria of
Xt

0.1 "|"Xt7

Xt4+1 = t=20,1,2,...
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Difference Equations: Stability

Denote by N; the size of a population at time ¢, t =0,1,2,...
Find all equilibria and determine their stability for the discrete
logistic growth sequence

N
Nep1 = N, [1+ R(l - —K’iﬂ

where we assume that the parameters R and K are both positive.
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rence Equations: Stability

Biologist T.S. Bellows investigated the ability of several difference
equations to describe the population dynamics of insects. He found that
the so called Generalized Beverton-Holt model provided the best

description. If x,, denotes the population density in the n-th generation,

then the model is of the form
r X

1+ xb
where r is the intrinsic fitness of population and b measures the
abruptness of density dependence.

Xn+1 —

For three insect species, Bellows found the following parameter estimates:

* Budworm moth: r = 3.5 and b = 2.7;
* Colorado potato beetle: r =75 and b = 4.8;
* Meadow plant bug: r = 2.2 and b = 1.4.

(a) Use these parameter estimates to determine which population
supports a stable equilibrium.

(b) For the species that do not support a stable equilibrium simulate

their dynamics.
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Antiderivatives

Roughly speaking, Calculus has two parts:

differential calculus and integral calculus

At the core of differential calculus (which we have been studying
so far) is the concept of the instantaneous rate of change of a
function. We have seen how this concept can be used to locally
approximate functions, to identify maxima and minima, to decide
stability of equilibria, etc.

Integral calculus, on the other hand, deals with accumulated
change, and, thereby, recovering a function from a mathematical
description of its instantaneous rate of change. This recovery
process, interestingly enough, is related to the concept of finding

the area enclosed by a curve. This will be studied in Chapter 6
(and in the follow up course, MA 138).
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Many mathematical operations have an inverse. For example, to undo
addition we use subtraction. To undo undo exponentiation we take logarithms.
The process of differentiation can be undone by a process called
antidifferentiation. |

To motivate antidifferentiation, suppose we know the rate at which a

bacteria population is growing and want to know the size of the population

at some future time. The problem is to find a function f whose

derivative is a known function f.

A function F is called an antiderivative of f on an interva

F’(x) = f(x) for all x € [

Warning: Although we will learn rules that allow us to compute
antiderivatives, this process is typically much more difficult than finding
derivatives: in addition, there are even cases where it is impossible to find
an expression for an antiderivative.

http://www.ms.uky.edu/"mal37




Antiderivatives

Two corollaries of the Mean Value Theorem will help us in finding antiderivatives. The first one is Corollary 2 from
Section 5.1 (p. 212 of Neuhauser's textbook):

If £ is continuous on [a, b] and differentiable on (a b) with f/(x) = 0 for
all x € (a, b) ‘then f is constant on [a, b].

Corollary 2 is the converse of the fact that f/ (x) = 0 whenever f(x) is a constant function Corollary 2 tells us
that all antiderivatives of a function that is identically O are constant functions.

Corollary 3 says that functions with identical derivative differ only by a constant; that is, to find all antiderivatives
of a given function, we need only find one.

If F(x) and G(x) are antiderivatives of the continuous function f(x) on
“an interval /, then there e><|sts a constant ¢ such that G(x) = B +c
Hforallxel' |

Proof: Since F(x) and G(x) are both antiderivatives of f(x), it follows that F'(x) = f(x) = G'(x) for all x € I.
Thus ,
[F(x) = G = F'(x) = G'(x) = f(x) — f(x) = 0.

= ¢, where ¢ is a constant.

It follows from Corollary 2, applied to the function F — G, that F(x)
http://www.ms.uky.edu/ " mal37
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Antiderivatives

‘The indefinite integral of f(x), denoted by

. /f(x)dx
represents the genera/ antlderlva’uve of f(x)

T }tihwwmwmmwwmq S etERR S e e i

| A_‘ | /kf(x) dx = k/ f(x) dx k any.’constva’nt'

B. / [£(x) + g(x)] dx - [/ £(x) dx} I [/g(x) dx
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~ Antiderivatives

The formulas below can be verified by differentiating the righthand side
of each expression. The quantities a and ¢ below denote (nonzero) constants.

1
1. /X”dx:n+1x”+1+c n+—1

1
2. /—dx:ln\x]Jrc

X

3. /eax dx = leax + ¢
a

1
4. /sin(ax) dx = — cos(ax) + ¢

5. /cos(ax) dx = %sin(ax) +c

Warning: | We do not have simple derivative rules for products and quotients,

so we should not expect simple integral rules for products and quotients.
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Find the antiderivative F of f(x) = 5x* — 2x° that satisfies
F(0) = —10.

http://www.ms.uky.edu/~mal3




> -'gxc-(-C/
dner to ol ackdedonhoes o FO

We wad He e wch Yhat F(O):-—/O.Wj%

S C . “.‘”O
f0= Flo)= o7 -fofec i [Conte
- E(X): ngéx("-\OJ

I
X
l




Antiderivatives

Evaluate the indefinite integral /(t3 + 382 + 4t + 9) dt.
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Antiderivatives

Evaluate the indefinite integral /X(lO — x*) dx.

"""""
D
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Find a function f such that f/(x) = 4x3 and the line x +y =0 is
tangent to the graph of f.
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Antiderivatives

T e

Find f if f(x) = sin(x), f(0) = 8, f'(0) = 4, and "(0) = —10.
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In this course, we have repeatedly encountered differential
equations (= DEs). Occasionally, we showed that a certain
function would solve a given differential equation.

What we learned so far translates into solving DEs of the form

dy

v f(x).
That is, the rate of change of y with respect to x depends only on
x. We now know that if we can find one such function y such that
y' = f(x), then there is a whole family of functions with this

property, all related by vertical translations.

If we want to pick out one of these functions, we need to specify
an initial condition — a point (xp, yp) on the graph of the function.
Such a function is called a solution of the initial-value problem

d
?d% = f(x) with v = yp when x = xo.
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Antiderivatives

Solve the initial-value problem

when xp = 3.
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Antiderivatives

What about finding the solution of the initial-value problem
dy

=Y with y(0) = yp and r a constant? How can we do it?
Ix -
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