MA 138 – Calculus 2 with Life Science Applications Matrices (Section 9.2)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

Friday, March 3, 2017

Identity Matrix and Inverse of a Matrix

For any $n \ge 1$, the identity matrix is an $n \times n$ matrix, denoted by l_n , with 1's on its diagonal line and 0's elsewhere; that is,

$$I_n = \left[egin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ dots & dots & \ddots & dots \\ 0 & 0 & \cdots & 1 \end{array}
ight]$$

Property of the Identity Matrix

Suppose that A is an $m \times n$ matrix. Then $I_m A = A = AI_n$.

Inverse of a Matrix

Suppose that A is an $n \times n$ square matrix. If there exists an $n \times n$ square matrix B such that $AB = I_n = BA$ then B is called the inverse matrix of A and is denoted by A^{-1} .

Example 1 (Part I)...Checking

Verify that:

$$A_1 = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
 and $B_1 = \frac{1}{2} \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -5/2 \\ -1 & 3/2 \end{bmatrix}$

are inverses of each other. That is $A_1B_1 = I_2 = B_1A_1$.

$$A_2 = \begin{bmatrix} 3 & 5 & -1 \\ 2 & -1 & 3 \\ 4 & 2 & -3 \end{bmatrix} \quad \text{and} \quad B_2 = \frac{1}{73} \begin{bmatrix} -3 & 13 & 14 \\ 18 & -5 & -11 \\ 8 & 14 & -13 \end{bmatrix}$$

are inverses of each other. That is $A_2B_2 = I_3 = B_2A_2$.

$$\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & -\frac{5}{2} \\ -1 & \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -\frac{5}{2} \\ -1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

$$A_{1} \qquad B_{1} \qquad A_{1}$$

easy bout Addious

$$\begin{bmatrix} 3 & 5 & -1 \\ 2 & -1 & 3 \\ 4 & 2 & -3 \end{bmatrix} \begin{bmatrix} -\frac{3}{73} & \frac{13}{73} & \frac{14}{73} \\ \frac{18}{73} & -\frac{5}{73} & -\frac{11}{73} \\ \frac{14}{73} & \frac{14}{73} & -\frac{13}{73} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A2$$

$$B_{2}$$

and
$$B_2 \cdot A_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 ... very tedious!

Matrix Representation of Linear Systems

We observe that the system of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

can be written in matrix form as AX = B, where

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

The ... Guiding Light

- A simple key observation: To solve 5x = 10 for x, we just divide both sides by $5 \equiv 0$ multiply both sides by $1/5 = 5^{-1}$. That is, $5x = 10 \iff 5^{-1} \cdot 5x = 5^{-1} \cdot 10 \iff x = 2$ as $5^{-1} \cdot 5 = 1$ and $5^{-1} \cdot 10 = 2$.
- We have learnt how to write a system of n linear equations in n variables in the matrix form AX = B.
- To solve AX = B, we therefore need an operation that is analogous to multiplication by the 'reciprocal' of A. We have defined, whenever possible, a matrix A^{-1} that serves this function (i.e., $A^{-1} \cdot A = \text{Identity Matrix}$).
- Then, whenever possible, we can write the solution of AX = B as $AX = B \iff A^{-1} \cdot AX = A^{-1} \cdot B \iff X = A^{-1} \cdot B$.

Example 1 (Part II)

Using the results verified in Example 1 (Part I) and our *Guiding Light* (\equiv Principle), solve the following systems of linear equations by transforming them into matrix form

$$\begin{cases} 3x + 5y = 7 \\ 2x + 4y = 6 \end{cases}$$

$$\begin{cases} 3x + 5y - z = 10 \\ 2x - y + 3z = 9 \\ 4x + 2y - 3z = -1 \end{cases}$$

$$\begin{cases} 3 \times + 5 \text{ y} = 7 \\ 2 \times + 4 \text{ y} = 6 \end{cases} \longrightarrow \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$

$$\begin{cases} A_1 \\ \text{from (Part 1)} \end{cases}$$

$$\begin{cases} B_1 = \begin{bmatrix} 2 & -5/2 \\ -1 & 3/2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -5/2 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -5/2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -5/2 \end{bmatrix} \begin{bmatrix} 7 \\ -1 & 3/2 \end{bmatrix} \begin{bmatrix} 6 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & -\frac{5}{2} \\ -1 & \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -\frac{5}{2} \\ -1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

$$B_{1} \qquad B_{1} \qquad A_{1}$$

easy bout Hedious

$$\begin{bmatrix} 3 & 5 & -1 \\ 2 & -1 & 3 \\ 4 & 2 & -3 \end{bmatrix} \begin{bmatrix} -\frac{3}{73} & \frac{13}{73} & \frac{14}{73} \\ \frac{14}{73} & -\frac{5}{73} & -\frac{11}{73} \\ \frac{14}{73} & \frac{14}{73} & -\frac{13}{73} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A2$$

$$B2$$

and
$$B_2 \cdot A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 ... very tedious!

$$\begin{cases} 3 \times + 5 y = 7 \\ 2 \times + 4 y = 6 \end{cases} \longrightarrow \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$

$$\begin{cases} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_4 \\ A_4 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_6 \\ A_1 \\ A_1 \\ A_2 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_6 \\ A_1 \\ A_1 \\ A_1 \\ A_2 \\ A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_6 \\ A_1 \\ A_1 \\ A_2 \\ A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_6 \\ A_1 \\ A_1 \\ A_2 \\ A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_1 \\ A_2 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_4 \\ A_5 \\ A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_5 \\ A_5 \\ A_5 \\ A_2 \\ A_4 \\ A_5 \\ A_2 \\ A_4 \\ A_5 \\ A_$$

Properties of Matrix Inverses

The following properties of matrix inverses are often useful.

Properties of Matrix Inverses

Suppose A and B are both invertible $n \times n$ matrices then

- \blacksquare A^{-1} is unique;
- $(A^{-1})^{-1} = A;$
- \blacksquare $(AB)^{-1} = B^{-1}A^{-1}$;
- $(A^T)^{-1} = (A^{-1})^T$.

How do we find the inverse (if possible) of a matrix?

- First of all the matrix has to be a square matrix!
- Suppose n = 2. For example, $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$.
- We need to find a matrix $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ such that $AB = I_2 = BA$.

$$AB = I_2 \qquad \Longleftrightarrow \qquad \begin{bmatrix} 3x + 5z & 3y + 5w \\ 2x + 4z & 2y + 4w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{cases} 3x + 5z = 1 \\ 2x + 4z = 0 \end{cases} \text{ and } \begin{cases} 3y + 5w = 0 \\ 2y + 4w = 1 \end{cases}$$

$$\begin{bmatrix} 3 & 5 & 1 & 0 \\ 2 & 4 & 0 & 1 \end{bmatrix} \rightsquigarrow \dots \text{row reduce...} \rightsquigarrow \begin{bmatrix} 1 & 0 & 2 & -5/2 \\ 0 & 1 & -1 & 3/2 \end{bmatrix}$$

Warning (using the other condition)

- Consider again the matrix $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$.
- We need to find a matrix $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ such that $AB = I_2 = BA$.
- Suppose we impose instead the condition $BA = I_2$.

$$BA = I_2 \qquad \Longleftrightarrow \qquad \begin{bmatrix} 3x + 2y & 5x + 4y \\ 3z + 2w & 5z + 4w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

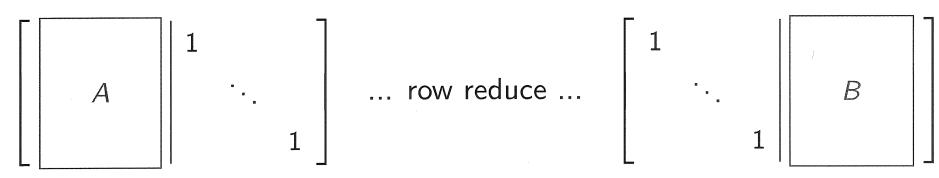
$$\begin{cases} 3x + 2y = 1 \\ 5x + 4y = 0 \end{cases} \text{ and } \begin{cases} 3z + 2w = 0 \\ 5z + 4w = 1 \end{cases}$$

$$\begin{bmatrix} 3 & 2 & 1 & 0 \\ 5 & 4 & 0 & 1 \end{bmatrix}$$
 ...row reduce... $\sim \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5/2 & 3/2 \end{bmatrix}$

Morale: We work with the transpose of A and of A^{-1} .

General Method for finding (if possible) the inverse

- Let A be an $n \times n$ matrix. Finding a matrix B with $AB = I_n$ results in n linear systems, each consisting of n equations in n unknowns.
- The corresponding augmented matrices have the same matrix A on their left side and a column of 0's and a single 1 on their right side.
- By solving these *n* systems simultaneously, we can speed up the process of finding the inverse matrix.
- To do so, we construct the augmented matrix $[A \mid I_n]$. We row reduce to obtain, if possible, the augmented matrix $[I_n \mid B]$.



The matrix B, if it exists, is the inverse A^{-1} of A.

Example 2

Find the inverse of the 3
$$\times$$
 3 matrix $A = \begin{bmatrix} -1 & 3 & -1 \\ 2 & -2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$

To find the inverse of
$$A = \begin{bmatrix} -1 & 3 & -1 \\ 2 & -2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$

We built the metrix

$$\begin{bmatrix} -1 & 3 & -1 & | & 1 & 0 & 0 \\ 2 & -2 & 3 & | & 0 & 1 & 0 \\ -1 & 1 & 2 & | & 0 & 0 & | \end{bmatrix}$$
and we row reduce to obtain

$$\begin{bmatrix} 1 & 0 & 0 & | & 1/2 & 1/2 \\ 0 & 1 & 0 & | & 1/2 & 1/4 \\ 0 & 0 & 1 & | & 0 & | & 1/4 \\ 0 & 0 & 1 & | & 0 & | & 1/4 \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | \\ 0 & 1/4 & 1/4 & | & 0 & | & 0 & | & 0 & | & 0 & | &$$

General Formula for a 2x2 Matrix

For simplicity we write
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 instead of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.

- Construct the augmented matrix $\begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{bmatrix}$.
- Perform the Gaussian Elimination Algorithm. Set $\Delta = ad bc$.

The Inverse of a 2×2 Matrix

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a 2×2 matrix.

- We define det(A) = ad bc.
- A is invertible (\equiv nonsingular) if and only if $\det(A) \neq 0$.

In particular,
$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Looking back at the formula for A^{-1} , where A is a 2×2 matrix whose determinant is nonzero, we see that, to find the inverse of A

- \blacksquare we divide by the determinant of A,
- \blacksquare switch the diagonal elements of A,
- change the sign of the off-diagonal elements.

If the determinant is equal to 0, then the inverse of A does not exist.

Example 3

Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$$
 $det(A) = 1.7 - 2.5$

$$\Delta = -\frac{1}{3} \cdot \begin{bmatrix} 7 & -5 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{7}{3} & \frac{5}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{7}{3} & \frac{5}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 $det(B) = 0 \cdot 1 - 1 \cdot 1 = -1$

$$B' = \frac{1}{-1} \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$

The determinant can be defined for any $n \times n$ matrix. The general formula is computationally complicated for $n \geq 3$.

We mention the following important result. Part (2) below will be of particular interest to us in the near future.

Theorem

Suppose that A is an $n \times n$ matrix, and X and X and X are X matrices. Then

- A is invertible (\equiv nonsingular) if and only if $det(A) \neq 0$.
- The matrix equation (\equiv system of linear equations) $AX = \mathbf{0}$ has a **nontrivial solution** \iff A is **singular** \iff $\det(A) = 0$.

Example 4

Find the solution of the following matrix equations (\equiv systems of linear equations)

$$\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(*)
$$\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Notice that
$$A^{-1} = \frac{1}{1.5 - 2.3} \cdot \begin{bmatrix} .5 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$$
thus; if we multiply both sides by A^{-1} we obtain
$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

thus; if we multiply both sides by
$$A^{-1}$$
 we obtain
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A^{-1} A$$

Thus
$$X = 0$$
 $y = 0$

*
$$\begin{bmatrix} 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ 8 & -2 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Notice that $\det(A) = 4(-2) - (-1)8 = 0$

Thus A^{-1} does not exist. In other words A is not invertible $(= A \text{ is singular})$

If we now reduce
$$\begin{bmatrix} 4 & -1 & 0 \\ 8 & -2 & 0 \end{bmatrix}$$
we obtain
$$\begin{bmatrix} 1 & -1/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

I.e. $x - \frac{1}{4}y = 0$ \Rightarrow $x = \frac{1}{4}y$

if we set $y = t$ then $x = \frac{1}{4}t$.

Thus
$$\begin{cases}
4 & -1 \\
8 & -2
\end{cases}
\begin{bmatrix}
4 & -1 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
4 & -1 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
4 & -1 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
4 & -1 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
5 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2
\end{bmatrix}
\begin{bmatrix}
7 & -2 \\
9 & -2$$