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Assume that A is a square matrix. A nonzero
'vector v that satlfles the equatlon |

" AV:,, AV ( 7& 0)

is an elgenvector of the matrlx A and the

number A ls an elgenvalue of the matrlx A

m The zero vector 0 always satisfies the equation AQ = A0 for any choice of A.
Thus 0 is not special. That's why we assume v # 0.

m The eigenvalue A\ can be 0, though.

m Geometric interpretation, when the eigenvalue A € R: If we draw a
straight line through the origin in the direction of an eigenvector, then any

vector on this straight line will remain on the line after the map A is applled ‘
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(b) A= 12
(c) A= -
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Given that wv; = and vy = are eigenvectors

_ 28 36
of the matrix A = ,

—18 —-23

determine the corresponding eigenvalues A1 and As.
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Example 3| (Online

Determine if A\ is an eigenvalue of the matrix A:

7 —10
(a) A= ) , and A\ = —2;

(b) A= and A\ =3;

(c) A= and A= -8
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' Finding the Eigenvalu

m We are interested in finding v # 0 and A such that Av = Av.
m We can rewrite this equation as Av — Av = 0.

m In order to factor v, we must multiply Av by the identity matrix 5.

(In the n X n case we multiply instead by /,. The procedure and outcome are exactly the samel!)
m Multiplication by b yields Av — Ahv = 0.
m We can now factor v, resulting in (A — Ah)v = 0.

m In Section 9.2, we showed that in order to obtain a nontrivial solution
(v # 0), the matrix A — Al must be singular; that is,

det(A — \b) =0
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Let us make the previous calculations more explicit (in the 2 X 2 case):
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A—Xly
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The equation det(A — Alp) = 0 that determines
the eigenvalues of A is a polynomial equation in A
of degree two. This polynomial is referred to as the
characteristic polynomial of A.

b
a } define
d

Fora2><2matrixA:|:
c

m trace(A) =a+d,
m det(A) = ad — bc.

The characteristic polynomial has a simple form:

(a . A)(d — ) — be

A% — trace(A)X + det(A)

If X1 and \> are the solutions of the characteristic
polynomial, then they must satisfy

' trace(A) = A1 + Ag‘ det(A) = Ay As.




Example 4

Consider the matrix A =

-3 1

(a) Find its eigenvalues A1 and As .

(b) Find the eigenvectors vi and v; associated with the eigenvalues from
part (a).

(c) Graph the lines through the origin in the direction of the eigenvectors
vi and vy, together with the eigenvectors v and vo and the vectors
Avi and Avs.
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|Example 5

Find the eigenvalues and associated unit eigenvectors of the (symmetric)
5 —-10
~10 20 |

matrix A =

http://www.ms.uky.edu/"mal38

 Lecture 25







Hew ce 3 Vi —'—:2\/2,;{ St v, =te R FEleen

Vi=2t . Heww o« U Y
| Mg/ € df/ﬁa&wuf &Z{? 54 /:) = -
Lok 4l [2f )

£K ] te @ -

> - [ L M f
} ;} o Aa, 6%fﬂ I/Zifx/gl #

(//M 7 € quf’cQ

e [ ;‘:J[ T :m

Y W |
CWy =l Owy=0

............................



A A ele

e

%




Find the value of k so that A has 0 as an eigenvalue.
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. [Example 7| (Onis
—3 k
—8 —8

For which value of k does the matrix A =

have one real eigenvalue of multiplicity 27
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Example 8

Find a matrix A such that wv; = and vy = are
_4 _5 ‘

eigenvectors of A, with eigenvalues A\; =5 and Ay = —1 respectively.
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Consider the matrix A =

(a) Find its eigenvalues.
(b) Find the eigenvectors associated with the eigenvalues from part (a).
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