MA 138 – Calculus 2 with Life Science Applications Vector Valued Functions (Section 10.4)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

April 12, 2017

Vector-valued functions

- So far, we have considered only real-valued functions $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.
- We now extend our discussion to functions whose the range is a subset of \mathbb{R}^m that is, $\mathbf{f}: \mathbb{R}^n \longrightarrow \mathbb{R}^m$.
- Such functions are vector-valued functions, since they take on values that are represented by vectors:

$$\mathbf{f}: \mathbb{R}^n \longrightarrow \mathbb{R}^m \qquad (x_1, x_2, \dots, x_n) \mapsto \left[\begin{array}{c} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) \end{array} \right].$$

■ Here, each function $f_i(x_1,...,x_n)$ is a real-valued function:

$$f_i: \mathbb{R}^n \longrightarrow \mathbb{R}$$
 $(x_1, x_2, \dots, x_n) \mapsto f_i(x_1, x_2, \dots, x_n).$

http://www.ms.uky.edu/~ma138

We will encounter vector-valued functions where n = m = 2 in Chapter 11.

Example

As an example, consider a community consisting of two species.

Let u and v denote the respective densities of the species and f(u, v) and g(u, v) the per capita growth rates of the species as functions of the densities u and v.

We can then write this relationship as a map

$$\mathbf{h}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad (u,v) \mapsto \left[\begin{array}{c} f(u,v) \\ g(u,v) \end{array} \right].$$

E.g., in the Lotka-Volterra predator-prey model: $(u, v) \mapsto \begin{bmatrix} \alpha - \beta v \\ \gamma u - \delta \end{bmatrix}$,

where α, β, γ , and δ are constants.

Review

We have defined earlier the linearization at a point (x_0, y_0) of a real-valued function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$; namely,

$$L_f(x,y) = f(x_0,y_0) + \frac{\partial f(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0,y_0)}{\partial y}(y-y_0).$$

■ We can write the above equation in matrix notation as

$$L_f(x,y) = f(x_0,y_0) + \underbrace{\left[\frac{\partial f(x_0,y_0)}{\partial x} \quad \frac{\partial f(x_0,y_0)}{\partial y}\right] \cdot \underbrace{\left[\begin{array}{c} x - x_0 \\ y - y_0 \end{array}\right]}_{1 \times 2 \text{ matrix}} \cdot \underbrace{\left[\begin{array}{c} x - x_0 \\ y - y_0 \end{array}\right]}_{2 \times 1 \text{ matrix}}.$$

Our Goal

Our task is to define the linearization at a point (x_0, y_0) of vector-valued functions whose domain and range are \mathbb{R}^2 ; that is,

$$\mathbf{h}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad (x,y) \mapsto \left[\begin{array}{c} f(x,y) \\ g(x,y) \end{array} \right].$$

■ To do so, we linearize at the point (x_0, y_0) each component of $\mathbf{h}(x, y)$

$$L_f(x,y) = f(x_0,y_0) + \frac{\partial f(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0,y_0)}{\partial y}(y-y_0)$$

$$L_g(x,y) = g(x_0,y_0) + \frac{\partial g(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial g(x_0,y_0)}{\partial y}(y-y_0).$$

We define the linearization of $\mathbf{h}(x, y)$ at the point (x_0, y_0) to be the vector-valued function $\mathbf{L}(x, y)$

$$\mathbf{L}(x,y) = \left[\begin{array}{c} L_f(x,y) \\ L_g(x,y) \end{array} \right].$$

The Jacobi (or Derivative) Matrix

We can rewrite the linearization $\mathbf{L}(x, y)$ at a point (x_0, y_0) of the vector-valued functions $\mathbf{h}(x, y)$ in the following matrix form

$$\mathbf{h}(x,y) \approx \mathbf{L}(x,y) = \begin{bmatrix} L_f(x,y) \\ L_g(x,y) \end{bmatrix}$$

$$= \begin{bmatrix} f(x_0,y_0) + \frac{\partial f(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0,y_0)}{\partial y}(y-y_0) \\ g(x_0,y_0) + \frac{\partial g(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial g(x_0,y_0)}{\partial y}(y-y_0) \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} f(x_0,y_0) \\ g(x_0,y_0) \end{bmatrix}}_{\mathbf{h}(x_0,y_0)} + \underbrace{\begin{bmatrix} \frac{\partial f(x_0,y_0)}{\partial x} & \frac{\partial f(x_0,y_0)}{\partial y} \\ \frac{\partial g(x_0,y_0)}{\partial x} & \frac{\partial g(x_0,y_0)}{\partial y} \end{bmatrix}}_{(D\mathbf{h})(x_0,y_0)} \cdot \underbrace{\begin{bmatrix} (x-x_0) \\ (y-y_0) \end{bmatrix}}_{(D\mathbf{h})(x_0,y_0)}$$

 $(D\mathbf{h})(x_0,y_0)$ is a 2 × 2 matrix called the **Jacobi matrix** of \mathbf{h} at (x_0,y_0) .

http://www.ms.uky.edu/~ma138

Example 1 (Problem #10, Exam 3, Spring 2012)

Consider the vector valued function $\mathbf{h}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by

$$\mathbf{h}(x,y) = \begin{bmatrix} x^2y - y^3 \\ 2x^3y^2 + y \end{bmatrix}.$$

- (a) Compute the **Jacobi matrix** $(D\mathbf{h})(x,y)$ and evaluate it at the point (1,2).
- (b) Find the linear approximation of h(x, y) at the point (1, 2).

(a)
$$Dh(x,y) = \begin{bmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & 2^2 - 3y^2 \\ 6x^2y^2 & 4x^3 + 1 \end{bmatrix}$$

Where $h(xy) - \begin{bmatrix} h_1(x,y) \\ -1 \end{bmatrix} = \begin{bmatrix} x^2y - y^3 \\ -1 \end{bmatrix}$

where
$$h(x,y) = \begin{bmatrix} h_1(x,y) \\ h_2(x,y) \end{bmatrix} = \begin{bmatrix} x^2y - y^3 \\ 2x^3y^2 + y \end{bmatrix}$$

hence at
$$(x=1, y=2)$$
 we have $Dh(1,2) = \begin{bmatrix} 4 & -11 \\ 24 & 9 \end{bmatrix}$

(b)
$$= (x,y) = \begin{pmatrix} h_1(1,2) \\ h_2(1,2) \end{pmatrix} + Dh(1,2) \cdot \begin{bmatrix} x-1 \\ y-2 \end{bmatrix}$$

$$= \begin{bmatrix} -6 \\ 10 \end{bmatrix} + \begin{bmatrix} 4 & -11 \\ 24 & 9 \end{bmatrix} \begin{bmatrix} x - 1 \\ y - 2 \end{bmatrix}$$

$$= \left[\frac{-6 + 4(x-1) - 11(y-2)}{10 + 24(x-1) + 9(y-2)} \right] = \left[\frac{4x - 11y + 12}{24x + 9y - 32} \right]$$

Example 2 (Problem #46, Section 10.4, p. 536)

Find a linear approximation to

$$\mathbf{f}(x,y) = \begin{bmatrix} \sqrt{2x+y} \\ x-y^2 \end{bmatrix}$$

at (1,2). Use your result to find an approximation for f(1.05, 2.05).

$$\frac{f(x,y)}{f(x,y)} = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \begin{bmatrix} \sqrt{2x+y} \\ x-y^2 \end{bmatrix}$$

$$\frac{f(x,y)}{f(x,y)} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_2}{\partial x} &$$

Example 3 (Example # 9, Section 10.4, p. 534)

Consider the function
$$\mathbf{f}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $(x,y) \mapsto \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}$, with

$$u(x, y) = y e^{-x}$$
 and $v(x, y) = \sin x + \cos y$.

Find the linear approximation to f(x, y) at (0, 0).

Compare $\mathbf{f}(0.1, -0.1)$ with its linear approximation.

$$f(x,y) = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} = \begin{bmatrix} ye^{-x} \\ sinx + cosy \end{bmatrix}$$

$$(Df)(x,y) = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} -ye^{-x} & e^{-x} \\ cosx & -siny \end{bmatrix}$$

$$(Df)(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
Linear approximation of f at $(0,0)$

$$f(x,y) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x-0 \\ y-0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

ĺ

The General Case

The General Case $f_1(x_1,\ldots,x_n)$ Consider the function $\mathbf{f}:\mathbb{R}^n \longrightarrow \mathbb{R}^m$, say $\mathbf{f}(x_1,\ldots,x_n) = \begin{bmatrix} f_m(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{bmatrix}$,

where $f_i: \mathbb{R}^n \longrightarrow \mathbb{R}$, are m real-valued functions of n variables.

The Jacobi matrix of **f** is an $m \times n$ matrix of the form

$$(D\mathbf{f})(x_1,\ldots,x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

The linearization of **f** about the point (x_1^*, \ldots, x_n^*) is then

$$\mathbf{L}(x_{1},...,x_{n}) = \begin{bmatrix} f_{1}(x_{1}^{*},...,x_{n}^{*}) \\ \vdots \\ f_{m}(x_{1}^{*},...,x_{n}^{*}) \end{bmatrix} + (D\mathbf{f})(x_{1}^{*},...,x_{n}^{*}) \cdot \begin{bmatrix} x_{1} - x_{1}^{*} \\ \vdots \\ x_{n} - x_{n}^{*} \end{bmatrix}$$

http://www.ms.uky.edu/~ma138