MA 138 – Calculus 2 with Life Science Applications Linear Systems: Theory (Section 11.1)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

Friday, April 14, 2017

Systems of Differential Equations

Suppose that we are given a set of variables x_1, x_2, \ldots, x_n , each depending on an independent variable, say, t, so that

$$x_1 = x_1(t), x_2 = x_2(t), \dots, x_n = x_n(t).$$

Suppose also that the dynamics of the variables are linked by n differential equations (\equiv DEs) of the first-order; that is,

$$\begin{cases} \frac{dx_1}{dt} = g_1(t, x_1, x_2, \dots, x_n) \\ \vdots \\ \frac{dx_n}{dt} = g_n(t, x_1, x_2, \dots, x_n) \end{cases}$$

- This set of equations is called a system of differential equations.
- On the LHS are the derivatives of $x_i(t)$ with respect to t. On the RHS is a function g_i that depends on the variables x_1, x_2, \ldots, x_n and on t.

Examples

■ Kermack & McKendrick epidemic disease model (SIR, 1927)

$$\begin{cases} \frac{dS}{dt} &= -bSI \\ \frac{dI}{dt} &= bSI - aI \end{cases}$$

$$\begin{cases} S = S(t) = \# \text{ of susceptible individuals} \\ I = I(t) = \# \text{ of infected individuals} \\ R = R(t) = \# \text{ of removed individuals} \end{cases} (\equiv \text{no longer susceptible})$$

$$a, b = \text{ constant rates}$$

■ Lotka-Volterra predator-prey model (1910/1920):

$$\begin{cases} \frac{dN}{dt} = rN - aPN & N(t) = \text{prey density} \\ P = P(t) = \text{predator density} \\ r = \text{intrinsic rate of increase of the prey} \\ a = \text{attack rate} \\ b = \text{efficiency rate of predators in turning preys into new offsprings} \\ d = \text{rate of decline of the predators} \end{cases}$$

Direction Field of a System of 2 Autonomous DEs

- Review the notion of the direction field of a DE of the first order dy/dx = f(x, y). We encountered this notion just before Section 8.2 (Handout; February 15, 2017).
- Consider, now a system of two autonomous differential equations

$$\begin{cases} \frac{dx}{dt} = g_1(x, y) \\ \frac{dy}{dt} = g_2(x, y) \end{cases}$$

Assuming that y is also a function of x and using the chain rule, we can eliminate t and obtain the DE

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g_2(x, y)}{g_1(x, y)}$$

of which we can plot the direction field.

Example (Lotka-Volterra)

Consider the system of DEs
$$\frac{dx}{dt} = x - 4xy$$
 and $\frac{dy}{dt} = 2xy - 3y$.

The direction field of the differential equation $\frac{dy}{dx} = \frac{(2x-3)y}{x(1-4y)}$ has been produced with the SAGE commands in Chapter 8.

Notice that the trajectories are closed curves. Furthermore, they all seem to revolve around the point P(3/2, 1/4). This is the point where the factors 2x - 3 and 1 - 4y of dy/dt and dx/dt, respectively, are both zero.

http://www.ms.uky.edu/~ma138

Linear Systems of Differential Equations (11.1)

We first look at the case when the g_i 's are linear functions in the variables $x_1, x_2, ..., x_n$ — that is,

$$\begin{cases} \frac{dx_1}{dt} = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n + f_1(t) \\ \vdots \\ \frac{dx_n}{dt} = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + f_n(t) \end{cases}$$

■ We can write the linear system in matrix form as

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{bmatrix}$$

and we call it an inhomogeneous system of linear, first-order differential equations.

We can write our inhomogeneous system of linear, first-order differential equations as follows

$$\frac{d\mathbf{x}}{dt} = A(t)\mathbf{x} + \mathbf{f}(t)$$

We are mainly interested in the case when f(t) = 0, that is,

$$\frac{d\mathbf{x}}{dt} = A(t)\mathbf{x},$$

an homogeneous system of linear, first-order differential equations.

Finally, we will study the case in which A(t) does not depend on t

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x},$$

an homogeneous system of linear, first-order differential equations with constant coefficients.

Example 1 (Problem #8, Exam 3, Spring 2013)

(a) Verify that the functions $x(t) = e^{4t} + 5e^{-t}$ and $y(t) = 4e^{4t} - 5e^{-t}$ (whose graphs are given below) are solutions of the system of DEs

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = 4x + 3y \end{cases}$$

with
$$x(0) = 6$$
 and $y(0) = -1$.

(b) Rewrite the given system of DEs and its solutions in the form

$$\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

system of differential equations

$$\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} e^{4t} + 5 \begin{bmatrix} \gamma \\ \delta \end{bmatrix} e^{-t}$$

solutions

for appropriate choices of the constants $a, b, c, d, \alpha, \beta, \gamma$, and δ .

Let's check that the proposed solutions are rivoleed satisfying the given system of linear DEs.

$$\chi(t) = e^{4t} + 5e^{-tt} \longrightarrow \frac{dx}{dt} = 4e^{4t} - 5e^{-t}$$

$$y(t) = 4e^{4t} - 5e^{-t}$$
 $\frac{dy}{dt} = 4(4e^{4t}) - 5(-e^{-t})$

$$= 16e^{4t} + 5e^{-t}$$

Thus ?

(1)
$$4e^{4t} - 5e^{-t} = \frac{dx}{dt} = y = 4e^{4t} - 5e^{-t}$$
 YES

(2)
$$16e^{4t} + 5e^{-t} = \frac{dy}{dt} \stackrel{?}{=} 4x + 3y = 4(e^{4t} + 5e^{-t}) + 3(4e^{4t} - 5e^{-t})$$

= $4e^4 + 20e^{-t} + 12e^{4t} - 15e^{-t}$
= $16e^{4t} + 5e^{-t}$

We also need to cluck that the initial Conditions are satisfed

$$y(t) = e^{4t} + 5e^{-t}$$

$$y(t) = 4e^{4t} - 5e^{-t}$$

$$\alpha(0) = e^{0} + 5e^{0} = 6$$

$$y(0) = 4e^{0} - 5e^{0} = -1$$

$$\frac{1}{2}$$

$$\int \frac{dx}{dt} = y$$

$$\frac{dy}{dt} = 4x + 3y$$

$$\int x(t) = e^{4t} + 5e^{-t}$$

$$y(t) = 4e^{4t} - 5e^{-t}$$

$$y(t) = 4e^{4t} - 5e^{-t}$$

$$\begin{array}{c}
\frac{d}{dt} \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{bmatrix} 0 & 1 & | \chi \\ 4 & 3 & | \chi \\ \end{bmatrix}
\end{array}$$

$$= \begin{bmatrix} e & 4t \\ 4e^{4t} \end{bmatrix} + \begin{bmatrix} 5e^{-t} \\ -5e^{-t} \end{bmatrix}$$

Specific Solutions of a Linear System of DEs

- Consider the system $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$.
- We claim that the vector-valued function

$$\mathbf{x}(t) = \left[egin{array}{c} v_1 e^{\lambda t} \ v_2 e^{\lambda t} \end{array}
ight] = \left[egin{array}{c} v_1 \ v_2 \end{array}
ight] e^{\lambda t}$$

where λ , v_1 and v_2 are constants, is a solution of the given system of DEs, for an appropriate choice of values for λ , v_1 , and v_2 .

More precisely, $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is an eigenvector of the matrix A corresponding to the eigenvalue λ of A.

$$\underline{x}(t) = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{\lambda t} = \begin{bmatrix} v_1 e^{\lambda t} \\ v_2 e^{\lambda t} \end{bmatrix}$$

Its derivative is
$$\frac{dx}{dt} = \begin{bmatrix} v_1 \lambda e^{\lambda t} \\ v_2 \lambda e^{\lambda t} \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{\lambda t}$$

Thus if we want it to be a solution of

$$\frac{dx}{dt} = Ax$$
 we need

$$\lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{\lambda t} = A \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{\lambda t}$$

Cancel et on both sides ... we get

$$A \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \text{i.e.} \quad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \text{eigenvalur}$$

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \text{eigenvactor}$$

The Superposition Principle

Principle

Suppose that

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}.$$

If
$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$
 and $\mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$

are solutions of the given system of DEs, THEN

$$\mathbf{x}(t) = c_1 \mathbf{y}(t) + c_2 \mathbf{z}(t)$$

is also a solution of the given system of DEs for any constants c_1 and c_2 .

http://www.ms.uky.edu/~ma138

$$\frac{d}{dt}\left(\underline{x}(t)\right) = \frac{d}{dt}\left(c_1\underline{y}(t) + c_1\underline{z}(t)\right)$$

$$= c_1\frac{d}{dt}\underline{y}(t) + c_2\frac{d}{dt}(\underline{z}(t))$$

$$= c_1\frac{d}{dt}\underline{y}(t) + c_2\frac{d}{dt}(\underline{z}(t))$$

$$= c_1\frac{d}{dt}\underline{y}(t) + c_2\frac{d}{dt}(\underline{z}(t))$$

$$= A\left(c_1\underline{y} + c_2\underline{z}\right)$$

$$= A\left(c_1\underline{y} + c_2\underline{z}\right)$$

$$= A\left(\underline{x}(t)\right)$$

$$= A\left(\underline{$$

The General Solution

Theorem

Let

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$

where A is a 2 × 2 matrix with **two real and distinct eigenvalues** λ_1 and λ_2 with corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 .

THEN

$$x(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

is the general solution of the given system of DEs.

The constants c_1 and c_2 depend on the initial condition.