with Life Science Applications

The Substitution Rule (Section 7.1)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

Wednesday, January 17, 2017

Section 7.1: The Substitution Rule

The substitution rule is the chain rule in integral form.
We therefore begin by recalling the chain rule.
Suppose that we wish to differentiate

$$
f(x)=\left(6 x^{2}+3\right)^{3}
$$

This is clearly a situation in which we need to use the chain rule.
We set $u=6 x^{2}+3$ so that $f(u)=u^{3}$.
The chain rule, using Leibniz notation, tells us that

$$
\frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d x}=3 u^{2} \cdot(6 \cdot 2 x)=3\left(6 x^{2}+3\right)^{2}(12 x)
$$

Reversing these steps and integrating along the way, we get

$$
\int 3\left(6 x^{2}+3\right)^{2}(12 x) d x=\int 3 u^{2} d u=u^{3}+C=\left(6 x^{2}+3\right)^{3}+C
$$

In the first step, we substituted u for $6 x^{2}+3$ and used $d u=12 x d x$.
This substitution simplified the integrand.
At the end, we substitute back $6 x^{2}+3$ for u to get the final answer in terms of x.

We summarize this discussion, by stating the following general principle:
Substitution Rule for Indefinite Integrals
If $u=g(x)$, then $\quad \int f[\underbrace{g(x)}_{u}] \underbrace{g^{\prime}(x) d x}_{d u}=\int f(u) d u$.

Example 1

Evaluate the indefinite integral $\int \cos x \sin x d x$
■ by using the substitution $u=\cos x$;

■ by using the substitution $u=\sin x$;

■ by using the trigonometric identity $\sin (2 x)=2 \sin x \cos x$.

Compare your answers.

Example 2

Evaluate the indefinite integral $\int(2 x+1) e^{x^{2}+x} d x$

Substitution Rule for Definite Integrals

Part II of the FTC says that when we evaluate a definite integral, we must find an antiderivative of the integrand and then evaluate the antiderivative at the limits of integration.

When we use the substitution $u=g(x)$ to find an antiderivative of an integrand, the antiderivative will be given in terms of u at first.

To complete the calculation, we can proceed in either of two ways:
(1) we can leave the antiderivative in terms of u and change the limits of integration according to $u=g(x)$;
(2) we can substitute $g(x)$ for u in the antiderivative and then evaluate the antiderivative at the limits of integration in terms of x.

Substitution Rule for Definite Integrals

The first method (1) is the more common one, and we summarize the procedure as follows:

Substitution Rule for Definite Integrals

If $u=g(x)$, then $\quad \int_{a}^{b} f[\underbrace{g(x)}_{u}] \underbrace{g^{\prime}(x) d x}_{d u}=\int_{g(a)}^{g(b)} f(u) d u$.

Example 3 (Online Homework \# 6)

Evaluate the definite integral $\int_{1}^{e^{5}} \frac{d x}{x(1+\ln x)}$.

Example 4 (Online Homework \# 8)

Consider the indefinite integral $\int \frac{3}{3+e^{x}} d x$.

- The most appropriate substitution to simplify this integral is $u=f(x)$ where $f(x)=$ \qquad .
We then have $d x=g(u) d u$ where $g(u)=$ \qquad .
(Hint: you need to back substitute for x in terms of u for this part.)
- After substituting into the original integral we obtain $\int h(u) d u$ where $h(u)=$ \qquad .
- To evaluate this integral rewrite the numerator as $3=u-(u-3)$. Simplify, then integrate, thus obtaining $\int h(u) d u=H(u)$ where $H(u)=+C$.

Example 4, cont.ed (Online Homework \# 8)

■ After substituting back for u we obtain our final answer

$$
\int \frac{3}{3+e^{x}} d x=\square+C
$$

Example 5 (Online Homework \# 9)

Consider the definite integral $\int_{0}^{1} x^{2} \sqrt{5 x+6} d x$.

- Then the most appropriate substitution to simplify this integral is $u=$ \qquad . Then $d x=f(x) d u$ where $f(x)=$ \qquad .

■ After making the substitution and simplifying we obtain the integral

$$
\int_{a}^{b} g(u) d u
$$

where $g(u)=$ \qquad , $a=$ and $b=$ \qquad .

- This definite integral has value $=$ \qquad .

Example 6 (similar to Example 5)

Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3}+2} d x$.
■ Then the most appropriate substitution to simplify this integral is $u=$ \qquad . Then $d x=f(x) d u$ where $f(x)=$ \qquad .

■ After making the substitution and simplifying we obtain the integral

$$
\int_{a}^{b} g(u) d u
$$

where $g(u)=$ \qquad , $a=$ and $b=$ \qquad .

- This definite integral has value $=$ \qquad .

Example 7 (Online Homework \# 11)

Consider the indefinite integral $\int \frac{1}{3 x+7 \sqrt{x}} d x$.
■ Then the most appropriate substitution to simplify this integral is $u=$ \qquad . Then $d x=f(x) d u$ where $f(x)=$ \qquad .

■ After making the substitution and simplifying we obtain the integral

$$
\int g(u) d u
$$

where $g(u)=$ \qquad .

■ This last integral is: $=$ \qquad $+C$.
(Leave out constant of integration from your answer.

- After substituting back for u we obtain the following final form of the answer: = \qquad $+C$.

