MA 138 - Calculus 2 with Life Science Applications Handout

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

February 15, 2017

Direction fields of differential equations

■ Many differential equations cannot be solved conveniently by analytical methods, so it is important to consider what qualitative information can be obtained about their solutions without actually solving the equations.

- A direction field (or slope field) is a graphical representation of the solutions of a first-order differential equation of the form

$$
\frac{d y}{d x}=f(x, y)
$$

■ Imagine that you are standing at a point $P(\alpha, \beta)$ in the $x y$-plane and that the above differential equation determines your future location. Where should you go next? You move along a curve whose tangent line at the point $P(\alpha, \beta)$ has slope $d y /\left.d x\right|_{P}=f(\alpha, \beta)$.

■ We (or, better, a computer) can construct a direction field (or slope field) by evaluating the function $f(x, y)$ at each point of a rectangular grid consisting of at least a few hundred points. Then, at each point of the grid, a short line segment is drawn whose slope is the value of f at that point.

- Thus each line segment is tangent to the graph of the solution passing through that point.
- A direction field drawn on a fairly fine grid gives a good picture of the overall behavior of solutions of a given differential equation.
- The graph of a solution to the given differential equation is a curve in the $x y$-plane. It is often useful to regard this curve as the path, or trajectory traversed by a moving particle.
- The $x y$-plane is called the phase plane and a representative set of trajectories is referred to as a phase portrait.

Direction fields of differential equations... with SAGE

■ SAGE is a free open-source mathematics software system.
www.sagemath.org/

- To try sage online follow the appropriate links at the above address and select one of the OpenID providers (say, for example, Google or Yahoo).
- It is easy to plot direction (slope) fields of a differential equation using SAGE. For this we use the command
plot_slope_field

The picture below shows you a snapshot of a session in SAGE with the direction field of the differential equation $\quad d y / d x=\sin (x) \sin (y)$.

```
5D午 The Sage Notebook
alberto1corso Togqle | Home | Pubbished | Log | Settings | Help | Report a Problem | Sign out
*)
File... - Action ■ Data. ■ sage ■ Typeset
```


$\mathrm{x}, \mathrm{y}=\operatorname{var}(\mathrm{x} y$ ' $)$
plot_slope_field $(\sin (x) * \sin (y),(x,-5,5),(y,-5,5)$, headgeislgngth $=3$, headlaggth $=3)$

Example 1

Consider the differential equation

$$
\frac{d y}{d x}=x^{2} y^{2} \quad \leadsto \quad \int \frac{d y}{y^{2}}=\int x^{2} d x
$$

The general solution is

$$
y=\frac{-3}{x^{3}+C}
$$

where C is a constant. If we make the constant equal to $6,-3$, and 0.3 , respectively, we obtain the three solutions below

$$
y_{1}=\frac{-3}{x^{3}+6} \quad y_{2}=\frac{-3}{x^{3}-3} \quad y_{3}=\frac{-3}{x^{3}+0.3}
$$

which correspond to the initial conditions

$$
y_{1}(0)=-0.5 \quad y_{2}(0)=1 \quad y_{3}(0)=-10
$$

respectively.

Below are the commands to plot the direction field of the given differential equation as well as the graphs of those three particular solutions.

```
x,y=var('x,y')
```

$\mathrm{v}=\mathrm{plot}$ _slope_field $\left(\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 2,(\mathrm{x},-5,5),(\mathrm{y},-10,10)\right.$, headaxislength=3, headlength=3)
$\mathrm{a}=6$
$b=-3$
$\mathrm{c}=0.3$
$d 1=p \operatorname{lot}\left(-3 /\left(x^{\wedge} 3+a\right),(x, 0,4)\right)$
$d 2=p l o t\left(-3 /\left(x^{\wedge} 3+b\right),(x, 0,1.4)\right)$
$d 3=p \operatorname{lot}\left(-3 /\left(x^{\wedge} 3+c\right),(x, 0,4)\right)$
show ($\mathrm{v}+\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3$)

Phase Portrait 1: direction field of $d y / d y=x^{2} y^{2}$ and some particular solutions.

Remark (about Example 1)

If you compute the limit as x tends to infinity of

$$
y=\frac{-3}{x^{3}+C}
$$

you see that for any choice of C the limit is 0 .
This seems inconsistent with the behavior of y_{2} in the previous phase portrait. (It seems very different from the behavior of y_{1} and y_{3}.) This difference is due to the fact that

$$
\lim _{x \rightarrow(\sqrt[3]{3})^{-}} \frac{-3}{x^{3}-3}=+\infty
$$

that is, the solution y_{2} has a discontinuity at $x=\sqrt[3]{3}$.

Example 2

Consider the differential equation

$$
\frac{d y}{d x}=y^{2}-4 \quad \leadsto \quad \int \frac{d y}{(y-2)(y+2)}=\int d x
$$

Using the method of partial fractions, we saw that the general solution is

$$
y=2 \cdot \frac{1+C e^{4 x}}{1-C e^{4 x}}=2 \cdot \frac{e^{-4 x}+C}{e^{-4 x}-C}
$$

where C is a constant. If we make the constant equal to $2,-1$, and 0.1 , respectively, we obtain the three solutions

$$
y_{1}=2 \cdot \frac{1+2 e^{4 x}}{1-2 e^{4 x}} \quad y_{2}=2 \cdot \frac{1-e^{4 x}}{1+e^{4 x}} \quad y_{3}=2 \cdot \frac{1+0.1 e^{4 x}}{1-0.1 e^{4 x}}
$$

which correspond to the initial conditions

$$
y_{1}(0)=-6 \quad y_{2}(0)=0 \quad y_{3}(0)=\frac{22}{9} \approx 2 . \overline{4}
$$

respectively.

Below are the commands to plot the direction field of the given differential equation as well as the graphs of those three particular solutions.

```
x,y=var('x,y')
a=2
b=-1
c=0.1
d1=plot (2*(1+a*e^(4*x))/(1-a*e^(4*x)), (x,0,4)
d2=plot}(2*(1+b*e^(4*x))/(1-b*e^(4*x)),(x,0,4
d3=plot}(2*(1+c*e^(4*x))/(1-c*e^(4*x)),(x,0,0
show(v+d1+d2+d3)
```

v=plot_slope_field $\left(\left(y^{\wedge} 2-4\right),(x,-5,5),(y,-5,5)\right.$, headaxislength=3, headlength=3)

Phase Portrait 2: direction field of $d y / d y=y^{2}-4$ and some particular solutions.

Remark (about Example 2)

If you compute the limit as x tends to infinity of

$$
y=2 \cdot \frac{1+C e^{4 x}}{1-C e^{4 x}}=2 \cdot \frac{e^{-4 x}+C}{e^{-4 x}-C}
$$

you see that for any choice of C the limit is -2 .
This seems inconsistent with the behavior of y_{3} in the previous phase portrait. (It seems very different from the behavior of y_{1} and y_{2}.) This difference is due to the fact that

$$
\lim _{x \rightarrow(\ln (10) / 4)^{-}} 2 \cdot \frac{1+0.1 e^{4 x}}{1-0.1 e^{4 x}}=+\infty
$$

that is, the solution y_{3} has a discontinuity at $x=\ln (10) / 4$.

Example 3 (Logistic Growth Model)

This is an example with $r=0.2$ ($\equiv 20 \%$ growth rate) and $K=10$.

$$
\begin{aligned}
& \frac{d N}{d t}=0.2 N(1-N / 10) \\
& N(t)=\frac{10}{1+\left(10 / N_{0}-1\right) e^{-0.2 t}}
\end{aligned}
$$

Phase Portrait 3: direction field of $d N / d t=0.2 N(1-N / 10)$ and some particular solutions.

