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.. Example 4 (Lotka-Volterra Predator-Prey Model)

We give an example of a class of differential equations that describes

the interaction of two species in a way in which one species (the

predator) preys on the other species (the prey), while the prey lives

on a different source of food.

The population distributions tend to show periodic oscillations.

We stress upfront that a model involving only two species cannot fully

describe the complex relationship among species that actually occur

in nature. Nevertheless, the study of simple models is the first step

toward an understanding of more complicated phenomena.

Alfred Lotka (March 2, 1880–December 5, 1949) was a Polish-born mathematician, physical chemist, and statistician, best

known for his proposal of the predator-prey model, developed simultaneously but independently of Vito Volterra. The

Lotka-Volterra model is still the basis of many models used in the analysis of population dynamics in ecology.

Vito Volterra (May 3, 1860–October 11, 1940) was an Italian mathematician and physicist, known for his contributions to

mathematical biology and integral equations.
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.. Heuristics

When the prey population increases in size, the predatory species

obtains a larger food base. Hence, with a certain time delay it will

also become more numerous.

As a consequence, the growing pressure for food will reduce the prey

population.

After a while food becomes rare for the predator species so that its

propagation is inhibited. The size of the predator population will

decline.

The new phase favors the prey population. Slowly it will grow again,

and the pattern in changing population sizes may repeat.

When conditions remain the same, the process continues in cycles.
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The figures below illustrate such cyclical dynamics.

Legend: Fluctuation of population size of Paramecium aurelia

which feeds upon Saccharomyces exiguus.

Legend:
(a) Fluctuations in the number of pelts sold by the

Hudson Bay Company.

(b) Detail of the 30-year period starting in 1875.

(c) Phase plane plot of the data in (b).
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A (highly simplified) model for the predator-prey interaction can be

summarized as follows:
change in

the number

of prey

 =


natural

increase

in prey

 −


destruction

of prey by

predator




change in

the number

of predator

 =


increase in

predator resulting

from devouring prey

 −


natural

loss in

predator


We now translate this model into differential equations.

Let x = x(t) be the number of prey individuals and

y = y(t) the number of predator individuals at time instant t.

We assume that x and y are differentiable functions of t.
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The key assumptions in the Lotka-Volterra model are:

the birth rate of the prey species is likely to be proportional to x , that

is, equal to ax with a certain constant a > 0;

the destruction rate depends on x and on y . The more prey

individuals are available, the easier it is to catch them, and the more

predator individuals are around, the more stomachs have to be fed. It

is reasonable to assume that the destruction rate is proportional to x

and to y , that is, equal to bxy with a certain constant b > 0.

the birth rate of the predator population depends on food supply as

well as on its present size. We may assume that the birth rate is

proportional to x and to y , that is, equal to cxy with a certain

constant c > 0.

the death rate of the predator species is likely to be proportional to y ,

that is, equal to dy with a certain d > 0.
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Under these simplifying assumptions the differential equations that we

obtain are:
dx

dt
= ax − bxy

dy

dt
= cxy − dy .

How do we deal these equations?

Because of the interaction between the two populations x (prey) and y

(predator), we can view y as a function of x .

As a consequence of the chain rule, we have

dy

dt
=

dy

dx
· dx
dt︸ ︷︷ ︸

chain rule

;
dy

dx
=

dy/dt

dx/dt
;

dy

dx
=

(cx − d)y

x(a− by)
.
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Here is a numerical example with a = 1, b = 4, c = 2, and d = 3, so that

dy

dx
=

(2x − 3)y

x(1− 4y)
.

If we separate the variables this leads to

1− 4y

y
dy =

2x − 3

x
dx ;

(
1

y
− 4

)
dy =

(
2− 3

x

)
dx .

After integrating we obtain the solution

ln y − 4y = 2x − 3 ln x +C ; ln y + ln(e−4y )+ ln(x3)+ ln(e−2x) = C

; ye−4yx3e−2x = κ,

where C and κ = eC are constants.

It is worth mentioning that we can write the general solution of the

arbitrary Lotka-Volterra equation in the same fashion.
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The direction field of the differential equation dy/dx =
(2x − 3)y

x(1− 4y)
has

been produced with the SAGE commands introduced earlier.

Notice that the trajectories are closed curves. Furthermore, they all seem

to evolve around the point P(3/2, 1/4). This is the point where the

factors 2x − 3 and 1− 4y of dy/dt and dx/dt, respectively, are both zero.

This confirms our heuristics that the two populations should exhibit a

cyclic dynamic.
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..

Example 5 (Solow’s Economic Growth Model

von Bertalanffy’s Individual Growth Model)

These two models are two different reincarnations of the same differential

equation, namely
dy

dx
= aym − by y(0) = y0,

where a, b, and m are constants.

Robert Solow (born August 23, 1924) is an American economist particularly known for his work on the theory of economic

growth that culminated in the exogenous growth model named after him. He was awarded the John Bates Clark Medal (in

1961) and the 1987 Nobel Prize in Economics.

Karl Ludwig von Bertalanffy (September 19, 1901, Atzgersdorf near Vienna–June 12, 1972, Buffalo, New York) was an

Austrian-born biologist known as one of the founders of general systems theory (GST). GST is an interdisciplinary practice that

describes systems with interacting components, applicable to biology, cybernetics, and other fields. Bertalanffy proposed that

the laws of thermodynamics applied to closed systems, but not necessarily to “open systems,” such as living things. His

mathematical model of an organism’s growth over time, published in 1934, is still in use today.
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Solow’s economic growth model: The capital stock k = k(t)

varies over time t, increasing as a result of investments and

decreasing as a result of depreciation.

With these basic assumptions and using a Cobb-Douglass production

function, the Solow’s growth economic model becomes

dk

dt
= skα − δk with k(0) = k0,

where s, α, δ are constants 0 < s, α < 1 and δ > 0.

The constants s and δ are called the rate of savings and the

depreciation rate, respectively.
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Von Bertalanffy individual growth model: The individual growth

model published by von Bertalanffy in 1934 is widely used in

biological models and exists in a number of permutations.

In one of its forms it says that the change of body weight W of an

individual is given by the difference between the process of building

up (anabolism) and breaking down (catabolism)

dW

dt
= ηW 2/3 − κW with W (0) = W0,

where η and κ are the constants of anabolism and catabolism,

respectively.

The exponents 2/3 and 1 indicate that the latter (anabolism and

catabolism) are proportional to some powers of the body weight W .
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.. Solving: dy/dx = aym − by y(0) = y0

Consider the differential equation given earlier

dy

dx
= a ym − b y ;

dy

dx
= ym(a− b y1−m).

This suggests the use of the substitution u = y1−m. The chain rule says

du

dx
=

du

dy
·dy
dx

;
du

dx
= (1−m) y [(1−m)−1] dy

dx
;

1

1−m
ym

du

dx
=

dy

dx
.

If we now substitute the latter expression into our original differential

equation we get the separable differential equation below

du

dx
= (1−m) (a− b u).
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Separate the variables, multiply both sides by −b, and integrate. We get

b

b u − a
du = −(1−m) b dx ; ln(b u − a) = −(1−m) b x + C

where C is a constant.

After additional manipulations and substituting back y1−m in place of u:

y =

[
a

b
+ D · e−(1−m) b x

]1/(1−m)

,

where D = eC/b. The initial condition y(0) = y0 gives us: D = y1−m
0 − a

b
.

Thus the solution of our initial value problem is

y =

[
a

b
−

(
a

b
− y1−m

0

)
· e−(1−m) b x

]1/(1−m)

.

Notice that y∞ = lim
x→∞

y =

[
a

b

]1/(1−m)

.
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.. When m = 2/3

Our model with initial condition y(0) = y0 and asymptotic value y∞ is

dy

dx
= a y2/3 − b y ; y =

[
a

b
−

(
a

b
− y

1/3
0

)
· e−b x/3

]3
y∞ =

[
a

b

]3
.

Here is an example with a = 1.5, b = 2, and m = 2/3, so that

dy

dx
= 1.5 y2/3 − 2 y ; y =

[
0.75−

(
0.75− 3

√
y0

)
e−2/3x

]3
.

The direction field of the given DE is on

the right-hand side.

Notice that as x −→ ∞ all the solutions

approach the value

y∞ = (1.5/2)3 ≈ 0.422.
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.. Example 6 (Tumor Growth)

A tumor can be modeled as a spherical collection of cells and it acquires

resources for growth only through its surface area. All cells in a tumor are

also subject to a constant per capita death rate. The dynamics of tumor

mass M (in grams) might therefore be modeled as

dM

dt
= ηM2/3−κM M(0) = M0

where η and κ are positive constants. The first term represents tumor

growth via nutrients entering through the surface. The second term

represents a constant per capita death rate.

Assuming tumor mass is proportional to its volume, the diameter of the

tumor is related to its mass as D = aM1/3, where a > 0. Derive a

differential equation for D and show that it has the form of the von

Bertalanffy restricted growth equation (that we saw in a previous lecture).
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.. Example 7 (Gompertz Model of Tumor Growth)

Another model of tumor growth is given by the Gompertz model. This

tumor growth model assumes that the per volume growth rate of the

tumor declines as the tumor volume gets larger according to the equation

dV

dt
= a V (ln b − lnV )

where a and b are positive constants.

Show that the solution of this DE with initial tumor volume V (0) = V0 is

V (t) = b · exp
[
− ln

(
b

V0

)
e−at

]
.

Observe that lim
t−→∞

V (t) = b.

Note:

This model is sometimes used to study the growth of a population for which the per capita growth rate is density dependent.
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