MA 138 - Calculus 2 with Life Science Applications Matrices (Section 9.2)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

Friday, March 3, 2017

Identity Matrix and Inverse of a Matrix

For any $n \geq 1$, the identity matrix is an $n \times n$ matrix, denoted by I_{n}, with 1 's on its diagonal line and 0's elsewhere; that is,

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Property of the Identity Matrix

Suppose that A is an $m \times n$ matrix. Then $I_{m} A=A=A I_{n}$.

Inverse of a Matrix

Suppose that A is an $n \times n$ square matrix. If there exists an $n \times n$ square matrix B such that $A B=I_{n}=B A$ then B is called the inverse matrix of A and is denoted by A^{-1}.

Example 1 (Part I)...Checking

Verify that:

- $A_{1}=\left[\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right] \quad$ and $\quad B_{1}=\frac{1}{2}\left[\begin{array}{rr}4 & -5 \\ -2 & 3\end{array}\right]=\left[\begin{array}{rr}2 & -5 / 2 \\ -1 & 3 / 2\end{array}\right]$
are inverses of each other. That is $A_{1} B_{1}=I_{2}=B_{1} A_{1}$.
$\square A_{2}=\left[\begin{array}{rrr}3 & 5 & -1 \\ 2 & -1 & 3 \\ 4 & 2 & -3\end{array}\right] \quad$ and $\quad B_{2}=\frac{1}{73}\left[\begin{array}{rrr}-3 & 13 & 14 \\ 18 & -5 & -11 \\ 8 & 14 & -13\end{array}\right]$
are inverses of each other. That is $A_{2} B_{2}=I_{3}=B_{2} A_{2}$.

Matrix Representation of Linear Systems

We observe that the system of linear equations

$$
\left\{\begin{array}{ccccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+ & a_{2 n} x_{n} & = & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & = & b_{m}
\end{array}\right.
$$

can be written in matrix form as $A X=B$, where

$$
\underbrace{\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]}_{X}=\underbrace{\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]}_{B}
$$

The ... Guiding Light

- A simple key observation: To solve $5 x=10$ for x, we just divide both sides by 5 (\equiv multiply both sides by $1 / 5=5^{-1}$). That is,

$$
5 x=10 \quad \leftrightarrow \quad 5^{-1} \cdot 5 x=5^{-1} \cdot 10 \quad \leftrightarrow x=2
$$

as $5^{-1} \cdot 5=1$ and $5^{-1} \cdot 10=2$.
■ We have learnt how to write a system of n linear equations in n variables in the matrix form $A X=B$.

- To solve $A X=B$, we therefore need an operation that is analogous to multiplication by the 'reciprocal' of A. We have defined, whenever possible, a matrix A^{-1} that serves this function (i.e., $A^{-1} \cdot A=$ Identity Matrix).
- Then, whenever possible, we can write the solution of $A X=B$ as

$$
A X=B \quad \text { ни } \quad A^{-1} \cdot A X=A^{-1} \cdot B \quad \text { ни } \quad X=A^{-1} \cdot B .
$$

Example 1 (Part II)

Using the results verified in Example 1 (Part I) and our Guiding Light (\equiv Principle), solve the following systems of linear equations by transforming them into matrix form

$$
\left\{\begin{array}{l}
3 x+5 y=7 \\
2 x+4 y=6
\end{array}\right.
$$

$$
\left\{\begin{aligned}
3 x+5 y-z= & 10 \\
2 x-y+3 z= & 9 \\
4 x+2 y-3 z= & -1
\end{aligned}\right.
$$

Properties of Matrix Inverses

The following properties of matrix inverses are often useful.

Properties of Matrix Inverses

Suppose A and B are both invertible $n \times n$ matrices then

- A^{-1} is unique;
- $\left(A^{-1}\right)^{-1}=A$;
- $(A B)^{-1}=B^{-1} A^{-1}$;
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

How do we find the inverse (if possible) of a matrix?

- First of all the matrix has to be a square matrix!
- Suppose $n=2$. For example, $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right]$.
- We need to find a matrix $B=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ such that $A B=I_{2}=B A$.
- $A B=l_{2} \quad$ นึ $\left[\begin{array}{ll}3 x+5 z & 3 y+5 w \\ 2 x+4 z & 2 y+4 w\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- an $\left\{\begin{array}{l}3 x+5 z=1 \\ 2 x+4 z=0\end{array}\right.$ and $\left\{\begin{array}{l}3 y+5 w=0 \\ 2 y+4 w=1\end{array}\right.$
- $\rightsquigarrow\left[\begin{array}{ll|ll}3 & 5 & 1 & 0 \\ 2 & 4 & 0 & 1\end{array}\right] \rightsquigarrow$...row reduce... $\rightsquigarrow\left[\begin{array}{rr|rr}1 & 0 & 2 & -5 / 2 \\ 0 & 1 & -1 & 3 / 2\end{array}\right]$

Warning (using the other condition)

- Consider again the matrix $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right]$.
- We need to find a matrix $B=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ such that $A B=I_{2}=B A$.

■ Suppose we impose instead the condition $B A=I_{2}$.

- $B A=l_{2} \quad$ ~ $\rightarrow\left[\begin{array}{cc}3 x+2 y & 5 x+4 y \\ 3 z+2 w & 5 z+4 w\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- $\leadsto\left\{\begin{array}{l}3 x+2 y=1 \\ 5 x+4 y=0\end{array}\right.$ and $\left\{\begin{array}{l}3 z+2 w=0 \\ 5 z+4 w=1\end{array}\right.$
- $\leadsto\left[\begin{array}{ll|ll}3 & 2 & 1 & 0 \\ 5 & 4 & 0 & 1\end{array}\right] \rightsquigarrow$...row reduce... $\rightsquigarrow\left[\begin{array}{rr|rc}1 & 0 & 2 & -1 \\ 0 & 1 & -5 / 2 & 3 / 2\end{array}\right]$
- Morale: We work with the transpose of A and of A^{-1}.

General Method for finding (if possible) the inverse

■ Let A be an $n \times n$ matrix. Finding a matrix B with $A B=I_{n}$ results in n linear systems, each consisting of n equations in n unknowns.

- The corresponding augmented matrices have the same matrix A on their left side and a column of 0 's and a single 1 on their right side.
■ By solving these n systems simultaneously, we can speed up the process of finding the inverse matrix.
- To do so, we construct the augmented matrix $\left[A \mid I_{n}\right]$. We row reduce to obtain, if possible, the augmented matrix $\left[I_{n} \mid B\right]$.

- The matrix B, if it exists, is the inverse A^{-1} of A.

Example 2

Find the inverse of the 3×3 matrix $\quad A=\left[\begin{array}{rrr}-1 & 3 & -1 \\ 2 & -2 & 3 \\ -1 & 1 & 2\end{array}\right]$

General Formula for a 2×2 Matrix

■ For simplicity we write $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ instead of $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$.

- Construct the augmented matrix $\left[\begin{array}{cc|cc}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right]$.
- Perform the Gaussian Elimination Algorithm. Set $\Delta=a d-b c$.
$■ \varliminf^{\frac{1}{a} R_{1}}\left[\begin{array}{ll|ll}1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1\end{array}\right] \rightsquigarrow \underset{R_{2}-c R_{1}}{ }\left[\begin{array}{rrrr}1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & d-\frac{b c}{a} & -\frac{c}{a} & 1\end{array}\right]$
$\leadsto \begin{aligned} & \frac{a}{\Delta} R_{2}\end{aligned}\left[\begin{array}{rr|rr}1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & 1 & -\frac{c}{\Delta} & \frac{a}{\Delta}\end{array}\right] \rightsquigarrow R^{R_{1}-\frac{b}{a} R_{2}}\left[\begin{array}{rr|rr}1 & 0 & \frac{d}{\Delta} & -\frac{b}{\Delta} \\ 0 & 1 & -\frac{c}{\Delta} & \frac{a}{\Delta}\end{array}\right]$

The Inverse of a 2×2 Matrix

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix.

- We define $\operatorname{det}(A)=a d-b c$.
- A is invertible (\equiv nonsingular) if and only if $\operatorname{det}(A) \neq 0$.

In particular, $\quad A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$
Looking back at the formula for A^{-1}, where A is a 2×2 matrix whose determinant is nonzero, we see that, to find the inverse of A

- we divide by the determinant of A,
- switch the diagonal elements of A,
- change the sign of the off-diagonal elements.

If the determinant is equal to 0 , then the inverse of A does not exist.

Example 3

Find the inverse of the matrix

- $A=\left[\begin{array}{ll}1 & 5 \\ 2 & 7\end{array}\right]$
- $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$

The determinant can be defined for any $n \times n$ matrix. The general formula is computationally complicated for $n \geq 3$.

We mention the following important result. Part (2) below will be of particular interest to us in the near future.

Theorem

Suppose that A is an $n \times n$ matrix, and X and $\mathbf{0}$ are $n \times 1$ matrices. Then

- A is invertible (\equiv nonsingular) if and only if $\operatorname{det}(A) \neq 0$.
- The matrix equation (\equiv system of linear equations) $A X=\mathbf{0}$ has a nontrivial solution $\Longleftrightarrow A$ is singular $\Longleftrightarrow \operatorname{det}(A)=0$.

Example 4

Find the solution of the following matrix equations (\equiv systems of linear equations)

$$
\begin{aligned}
& \square\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \square \quad\left[\begin{array}{ll}
4 & -1 \\
8 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

