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.. Data Analysis and Curve Fitting

Imagine that we are studying a physical system involving two quantities:

x and y .

Also suppose that we expect a linear relationship between these two

quantities, that is, we expect y = ax + b, for some constants a and b.

We wish to conduct an experiment to determine the value of the constants

a and b. We collect some data (x1, y1), (x2, y2), . . . , (xn, yn), which we plot

in a rectangular coordinate system.

Since we expect a linear relationships, all these points should lie on a

single straight line: The slope of this line will be a, and the intercept is b.
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In other words, we should have that the following system of linear

equations has exactly one solution
ax1 + b = y1

ax2 + b = y2
...

axn + b = yn

↭


x1 1

x2 1
...

...

xn 1


[

a

b

]
=


y1

y2
...

yn


that is, we should expect the system of linear equations above to be

consistent.

Unfortunately, when we plot our data, we discover that our points do not

lie on a single line. This is only to be expected, since our measurements

are subject to experimental error.

http://www.ms.uky.edu/˜ma138 UK Math

Lectures 28 & 29



On the other hand, it appears

that the points are approximately

“collinear.”

It is our aim to find a straight line

with equation

y = â x + b̂

which fits the data “best.”

Of course, optimality could be

defined in many different ways.
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Figure 1: Fitting a straight line to data

by the method of least squares
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It is customary to proceed as follows. Consider the deviations (differences)

δ1 = (ax1 + b)− y1, δ2 = (ax2 + b)− y2, . . . , δn = (axn + b)− yn.

If all the data points were to be lying on a straight line then there would

be a unique choice for a and b such that all the deviations are zero.

In general they aren’t. Which of the deviations are positive, negative or

exactly zero depends on the choice of the parameters a and b.

As a condition of optimality we minimize the square root of the sum of the

squares of the deviations (“least squares”), that is, we choose â and b̂ in

such a way that
√
δ21 + δ22 + . . .+ δ2n is as small as possible.
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.. Remark
This kind of analysis of data is also called regression analysis, as one of the

early applications of least squares was to genetics, to study the well-known

phenomenon that children of unusually tall or unusually short parents tend

to be more normal in height than their parents. In more technical

language, the children’s height tends to “regress toward the mean.”

If you have taken a Statistics class, you might have seen these formulas

â =

n

( n∑
i=1

xiyi

)
−
( n∑

i=1

xi

)( n∑
i=1

yi

)
n

( n∑
i=1

x2i

)
−
( n∑

i=1

xi

)2 b̂ =
1

n

( n∑
i=1

yi − a
n∑

i=1

xi

)
,

which give the optimal solution to our least squares approximation

problem. There is no need to memorize these formulas. The discussion

that follows will explain how these formulas are obtained!
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.. Remark/Example

Suppose we are looking for a linear relationship between more than two

quantities!

For example, a consulting firm has been hired by a large SEC university to

help make admissions decisions.

Each applicant provides the university with three pieces of information:

their score on the SAT exam, their score on the ACT exam, and their high

school GPA (0-4 scale).

The university wishes to know what weight to put on each of these

numbers in order to predict student success in college.

The consulting firm begins by collecting data from the previous year’s

freshman class. In addition to the admissions data, the firm collects the

student’s current (college) GPA (0-4 scale), say C−GPA.
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A partial listing of the firm data

might look like

SAT ACT GPA C−GPA

600 30 3.0 3.2

500 28 2.9 3.0

750 35 3.9 3.5

650 30 3.5 3.5

550 25 2.8 3.2

800 35 3.7 3.7
...

...
...

...

Ideally, the firm would like to find numbers (weights) x1, x2, x3 such that

for all students

(SAT)x1 + (ACT)x2 + (GPA)x3 = (C−GPA).

These numbers would tell the university exactly what weight to put on

each piece of data. Statistically, of course, it is highly unlikely that such

numbers exist. Still, we would like to have an approximate “best” solution.
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.. Remark/Example

Instead of a linear relationship among the two quantities x and y involved

in our original physical system, suppose that we expect a quadratic

relationship. That is, we expect

y = ax2 + bx + c ,

for some constants a, b, and c. This means that all our plotted data
points should lie on a single parabola. In other words, the system of
equations below should have exactly one solution

ax21 + bx1 + c = y1

ax22 + bx2 + c = y2
...

ax2n + bxn + c = yn

↭


x21 x1 1

x22 x2 1
...

...
...

x2n xn 1




a

b

c

 =


y1

y2
...

yn


or, in other words, the system of linear equations should be consistent.
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Again, this is unlikely since data measurements are subject to experimental

error. As we mentioned, if the exact solution does not exists, we seek to

find the equation of the parabola y = â x2 + b̂ x + ĉ which fits our given

data best.
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Figure 2: Fitting a parabola to data

by the method of least squares

http://www.ms.uky.edu/˜ma138 UK Math

Lectures 28 & 29



.. General problem

In our all previous examples, our problem reduces to finding a solution to a

system of n linear equations in m variables, with n > m. Using our

traditional notations for systems of linear equations, we translate our

problem into matrix notation. Thus, we are seeking to solve

A x = b,

where A is an n ×m given matrix (with n > m), x is a column vector with

m variables, and b is a column vector with n given entries.
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.. Example 1

Find a solution to 
−1 2

2 −3

−1 3


[

x1

x2

]
=


4

1

2

 .
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.. “Best” approximate solution to our general problem

Now, instead of looking for a solution to our given system of linear

equations (which, in general, we don’t have!) we could look for an

approximate solution. To this end, we recall that for a given vector

v = [v1, v2, . . . , vn]
T its length is defined to be

||v|| =
√

v21 + v22 + . . .+ v2n .

(This is a generalized version of Pythagoras’ Theorem!)

If A is an n ×m matrix, x is a column vector with m entries and b is a

column vector with n entries, a least squares solution to the equation

Ax = b is a vector x̂ so that the length of the vector Ax̂− b, that is

||Ax̂− b||, is as small as possible. In other words

||Ax̂− b|| ≤ ||Az− b||

for every other vector z.
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.. Least Squares Solution

How do we find this? This is answered in the following Theorem.
.
Theorem
..

......

The least squares solution x̂ to the system of linear equations Ax = b,

where A is an n ×m matrix with n > m, is a/the solution x̂ to the

associated system (of m linear equations in m variables)

(ATA) x = ATb,

where AT denotes the transpose matrix of A.

Note: the matrix ATA in the Theorem is a symmetric, square matrix of

size m×m. If it is invertible, we can then expect exactly one solution...the

least squares solution!
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.. Example 1 (revisited):

Find the least squares solution to the system of linear equations
−1 2

2 −3

−1 3


[

x1

x2

]
=


4

1

2

 .
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.. Example 2

Find the least squares solution to the system of linear equations
1 −2

−1 2

0 3

2 5


[

x1

x2

]
=


3

1

−4

2

 .
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.. Example 3

Let us imagine that we are studying a physical system that gets hotter

over time. Let us also suppose that we expect a linear relationship

between time and temperature. That is, we expect time and temperature

to be related by a formula of the form

T = at + b,

where T is temperature (in degrees Celsius), t is time (in seconds), and a

and b are unknown physical constants. We wish to do an experiment to

determine the (approximate) values for the constants a and b. We allow

our system to get hot and measure the temperature at various times t.

The following table summarizes our findings

t (sec) 0.5 1.1 1.5 2.1 2.3

T (◦C) 32.0 33.0 34.2 35.1 35.7
.
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Find the least squares solution to the linear system that arises from this

experiment

0.5 a+ b = 32.0

1.1 a+ b = 33.0

1.5 a+ b = 34.2

2.1 a+ b = 35.1

2.3 a+ b = 35.7

↭



0.5 1

1.1 1

1.5 1

2.1 1

2.3 1


[

a

b

]
=



32.0

33.0

34.2

35.1

35.7


.
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.. Example 4

The table below is the estimated population of the United States (in

millions) rounded to three digits. Suppose there is a linear relationship

between time t and population P(t). Use this data to predict the U.S.

population in 2010.

year 1980 1985 1990 1995

population 227 237 249 262
.
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.. Example 5 (Exponential Fit) (Example 4 Revisited)

In population studies, exponential models are much more commonly used

than linear models. This means that we hope to find constants a and b

such that the population P(t) is given approximately by the equation

P(t) = a ebt . To convert this into a linear equation, we take the natural

logarithm of both sides, producing

lnP(t) = ln a+ bt.

Use the method of least squares to find values for ln a and b that best fit

the data of Example 4.

year 1980 1985 1990 1995

ln(population) 5.425 5.468 5.517 5.568
.
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