MA 138 - Calculus 2 with Life Science Applications Tangent Planes, Differentiability, and Linearization (Section 10.4)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky
April 7 \& 10, 2017

■ The key idea in both the one- and the two-dimensional case is to approximate functions by linear functions, so that the error in the approximation vanishes as we approach the point at which we approximated the function.

- If $z=f(x)$ is differentiable at $x=x_{0}$, then the equation of the tangent line of $z=f(x)$ at $\left(x_{0}, z_{0}\right)$ with $z_{0}=f\left(x_{0}\right)$ is given by

$$
z-z_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- We now generalize this situation to functions of two variables. The analogue of a tangent line is called a tangent plane, an example of which is shown in the picture on the right.

Tangent Plane

- Let $z=f(x, y)$ be a function of two variables.
$■$ We saw that the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$, evaluated at $\left(x_{0}, y_{0}\right)$, are the slopes of tangent lines at the point $\left(x_{0}, y_{0}, z_{0}\right)$, with $z_{0}=f\left(x_{0}, y_{0}\right)$, to certain curves through $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface $z=f(x, y)$.
- These two tangent lines, one in the x-direction, the other in the y-direction, define a unique plane.

■ If, in addition, $f(x, y)$ has partial derivatives that are continuous on an open disk containing (x_{0}, y_{0}), then we can show that the tangent line at $\left(x_{0}, y_{0}, z_{0}\right)$ to any other smooth curve on the surface $z=f(x, y)$ through $\left(x_{0}, y_{0}, z_{0}\right)$ is contained in this plane.

- The plane is then called the tangent plane.

More precisely, one can show the following result:

Equation of the Tangent Plane

If the tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$, where $z_{0}=f\left(x_{0}, y_{0}\right)$, exists, then that tangent plane has the equation

$$
z-z_{0}=\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right) .
$$

■ We should observe the similarity of this equation to the equation of the tangent line in the one-dimensional case.

- As we mentioned, the mere existence of the partial derivatives $\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}$ and $\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}$ is not enough to guarantee the existence of a tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$; something stronger is needed.

Example 1

Find an equation of the tangent plane to surface given by the graph of the function

$$
z=f(x, y)=x y^{2}+x^{2} y
$$

at the point $(1,-1,0)$.

Example 2 (Problem \#4, Online Homework)

Find an equation of the tangent plane to surface given by the graph of the function

$$
F(r, s)=r^{4} s^{-0.5}-s^{-4}
$$

at the point with $r_{0}=1$ and $s_{0}=1$.

Review of differentiability for a function of one variable

If $z=f(x)$ is a function of one variable, the tangent line is used to approximate $f(x)$ at $x=x_{0}$. The linearization of $f(x)$ at $x=x_{0}$ is given by

$$
L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

The distance between $f(x)$ and its linear approximation at $x=x_{0}$ is then

$$
|f(x)-L(x)|=\left|f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right| .
$$

If we divide the latter equation by the distance $\left|x-x_{0}\right|$, we find that

$$
\left|\frac{f(x)-L(x)}{x-x_{0}}\right|=\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f^{\prime}\left(x_{0}\right)\right| .
$$

Taking a limit and using the definition of the derivative at $x=x_{0}$, yields

$$
\lim _{x \rightarrow x_{0}}\left|\frac{f(x)-L(x)}{x-x_{0}}\right|=0
$$

We say that $f(x)$ is differentiable at $x=x_{0}$ if the above equation holds.

Differentiability and Linearization

Suppose that $f(x, y)$ is a function of two independent variables with both $\partial f / \partial x$ and $\partial f / \partial y$ defined on an open disk containing $\left(x_{0}, y_{0}\right)$.

- Set $L(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right)$.
- $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left|\frac{f(x, y)-L(x, y)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}\right|=0$.
- If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then $\quad z=L(x, y) \quad$ provides the equation of the tangent plane to the graph of f at $\left(x_{0}, y_{0}, z_{0}\right)$.
- $f(x, y)$ is differentiable if it is differentiable at every point of its domain.
- Suppose f is differentiable at $\left(x_{0}, y_{0}\right)$, the approximation $f(x, y) \approx L(x, y)$ is the standard linear approximation, or the tangent plane approximation, of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$.
- That $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ means that the function $f(x, y)$ is close to the tangent plane at $\left(x_{0}, y_{0}\right)$ for all (x, y) close to $\left(x_{0}, y_{0}\right)$.
- As in the one-dimensional case, the following theorem holds:

Theorem

If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then f is continuous at $\left(x_{0}, y_{0}\right)$.

- The mere existence of the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ at $\left(x_{0}, y_{0}\right)$, however, is not enough to guarantee differentiability (and, consequently, the existence of a tangent plane at a certain point).
- The following differentiability criterion suffices for all practical purposes.

Sufficient Condition For Differentiability

Suppose $f(x, y)$ is defined on an open disk centered at $\left(x_{0}, y_{0}\right)$ and the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ are continuous on an open disk centered at $\left(x_{0}, y_{0}\right)$. Then $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$.

Example 3 (Problem \#6, Online Homework)

Estimate $f(3.01,2.02)$ given that

$$
f(3,2)=4 \quad f_{x}(3,2)=-5 \quad f_{y}(3,2)=2
$$

Example 4 (Problem \#5(b), Exam 4, Spring 2012)

Find the linear approximation of the function

$$
f(x, y)=x \cdot e^{x y}
$$

at $(1,0)$, and use it to approximate $f(1.1,-0.1)$. Using a calculator, compare the approximation with the exact value of $f(1.1,-0.1)$.

Example 5 (Problem \#9, Online Homework)

Find the linearization of the function

$$
f(x, y)=\sqrt{23-x^{2}-5 y^{2}}
$$

at the point $(-3,-1)$.
Use the linear approximation to estimate the value of $f(-3.1,-0.9)$.

Example 6 (Problem \#6, Exam 3, Spring 2013)

Consider the function $f(x, y)=x e^{-x^{2}-y^{2}}$ whose graph is given in the picture on the right.
(a) Find the z-coordinate z_{0} of the point P on the graph of the function $f(x, y)$ with x-coordinate $x_{0}=1$ and y-coordinate $y_{0}=1$.

(b) Write the equation of the tangent plane to the graph of the function $f(x, y)$ at the point P, as above, with coordinates $x_{0}=1$ and $y_{0}=1$.
(c) Write the linear approximation, $L(x, y)$, of the function f at the point with $x_{0}=1$ and $y_{0}=1$, as above, and use it to approximate $f(1.1,0.9)$.
Compare this approximate value to the exact value $f(1.1,09)$.

Functions of more than two variables

Similar discussions can be carried for functions of more than two variables.
For example, if $w=f(x, y, z)$ is a function of three independent variables which is differentiable at a point $\left(x_{0}, y_{0}, z_{0}\right)$, then the linear approximation $L(x, y, z)$ of f at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by the formula

$$
\begin{gathered}
L(x, y, z)= \\
f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(z-z_{0}\right) .
\end{gathered}
$$

Example 7 (Problem \#10, Online Homework)

Find the linear approximation to the function

$$
f(x, y, z)=\frac{x y}{z}
$$

at the point $(-2,-3,-1)$.

