MA 138 - Calculus 2 with Life Science Applications Vector Valued Functions (Section 10.4)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

April 12, 2017

Vector-valued functions

■ So far, we have considered only real-valued functions $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$.

- We now extend our discussion to functions whose the range is a subset of \mathbb{R}^{m} - that is, $\mathbf{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$.

■ Such functions are vector-valued functions, since they take on values that are represented by vectors:

$$
\mathbf{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

■ Here, each function $f_{i}\left(x_{1}, \ldots, x_{n}\right)$ is a real-valued function:

$$
f_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R} \quad\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

We will encounter vector-valued functions where $n=m=2$ in Chapter 11 .

Example

As an example, consider a community consisting of two species. Let u and v denote the respective densities of the species and $f(u, v)$ and $g(u, v)$ the per capita growth rates of the species as functions of the densities u and v.
We can then write this relationship as a map

$$
\mathbf{h}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad(u, v) \mapsto\left[\begin{array}{l}
f(u, v) \\
g(u, v)
\end{array}\right]
$$

E.g., in the Lotka-Volterra predator-prey model: $(u, v) \mapsto\left[\begin{array}{c}\alpha-\beta v \\ \gamma u-\delta\end{array}\right]$, where α, β, γ, and δ are constants.

Review

■ We have defined earlier the linearization at a point $\left(x_{0}, y_{0}\right)$ of a real-valued function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$; namely,

$$
L_{f}(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right) .
$$

- We can write the above equation in matrix notation as

$$
L_{f}(x, y)=f\left(x_{0}, y_{0}\right)+\underbrace{\left[\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} \quad \frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\right]}_{1 \times 2 \text { matrix }} \cdot \underbrace{\left[\begin{array}{c}
x-x_{0} \\
y-y_{0}
\end{array}\right]}_{2 \times 1 \text { matrix }} .
$$

Our Goal

■ Our task is to define the linearization at a point $\left(x_{0}, y_{0}\right)$ of vector-valued functions whose domain and range are \mathbb{R}^{2}; that is,

$$
\mathbf{h}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad(x, y) \mapsto\left[\begin{array}{l}
f(x, y) \\
g(x, y)
\end{array}\right]
$$

■ To do so, we linearize at the point $\left(x_{0}, y_{0}\right)$ each component of $\mathbf{h}(x, y)$

$$
\begin{aligned}
& L_{f}(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right) \\
& L_{g}(x, y)=g\left(x_{0}, y_{0}\right)+\frac{\partial g\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial g\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right) .
\end{aligned}
$$

■ We define the linearization of $\mathbf{h}(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ to be the vector-valued function $\mathbf{L}(x, y)$

$$
\mathbf{L}(x, y)=\left[\begin{array}{l}
L_{f}(x, y) \\
L_{g}(x, y)
\end{array}\right]
$$

The Jacobi (or Derivative) Matrix

We can rewrite the linearization $\mathbf{L}(x, y)$ at a point $\left(x_{0}, y_{0}\right)$ of the vector-valued functions $\mathbf{h}(x, y)$ in the following matrix form

$$
\begin{aligned}
\mathbf{h}(x, y) \approx \mathbf{L}(x, y) & =\left[\begin{array}{c}
L_{f}(x, y) \\
L_{g}(x, y)
\end{array}\right] \\
& =\left[\begin{array}{c}
f\left(x_{0}, y_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right) \\
g\left(x_{0}, y_{0}\right)+\frac{\partial g\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial g\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right)
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{c}
f\left(x_{0}, y_{0}\right) \\
g\left(x_{0}, y_{0}\right)
\end{array}\right]}_{\mathbf{h}\left(x_{0}, y_{0}\right)}+\underbrace{\left[\begin{array}{ll}
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} & \frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y} \\
\frac{\partial g\left(x_{0}, y_{0}\right)}{\partial x} & \frac{\partial g\left(x_{0}, y_{0}\right)}{\partial y}
\end{array}\right]}_{(D \mathbf{h})\left(x_{0}, y_{0}\right)} \cdot\left[\begin{array}{c}
\left(x-x_{0}\right) \\
\left(y-y_{0}\right)
\end{array}\right]
\end{aligned}
$$

$(D \mathbf{h})\left(x_{0}, y_{0}\right)$ is a 2×2 matrix called the Jacobi matrix of \mathbf{h} at $\left(x_{0}, y_{0}\right)$.

Example 1 (Problem \#10, Exam 3, Spring 2012)

Consider the vector valued function $\quad \mathbf{h}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by

$$
\mathbf{h}(x, y)=\left[\begin{array}{c}
x^{2} y-y^{3} \\
2 x^{3} y^{2}+y
\end{array}\right]
$$

(a) Compute the Jacobi matrix $(D \mathbf{h})(x, y)$ and evaluate it at the point $(1,2)$.
(b) Find the linear approximation of $\mathbf{h}(x, y)$ at the point $(1,2)$.

Example 2 (Problem \#46, Section 10.4, p. 536)

Find a linear approximation to

$$
\mathbf{f}(x, y)=\left[\begin{array}{c}
\sqrt{2 x+y} \\
x-y^{2}
\end{array}\right]
$$

at $(1,2)$. Use your result to find an approximation for $\mathbf{f}(1.05,2.05)$.

Example 3 (Example \# 9, Section 10.4, p. 534)

Consider the function

$$
\begin{aligned}
& \text { he function } \quad \mathbf{f}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad(x, y) \mapsto\left[\begin{array}{c}
u(x, y) \\
v(x, y)
\end{array}\right], \quad \text { with } \\
& u(x, y)=y e^{-x} \quad \text { and } \quad v(x, y)=\sin x+\cos y .
\end{aligned}
$$

Find the linear approximation to $\mathbf{f}(x, y)$ at $(0,0)$.
Compare $\mathbf{f}(0.1,-0.1)$ with its linear approximation.

The General Case

■ Consider the function $\mathbf{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, say $\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=$

$$
\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
$$

where $f_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, are m real-valued functions of n variables.

- The Jacobi matrix of \mathbf{f} is an $m \times n$ matrix of the form

$$
(D f)\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

- The linearization of \mathbf{f} about the point $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is then

$$
\mathbf{L}\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
f_{1}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \\
\vdots \\
f_{m}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)
\end{array}\right]+(D \mathbf{f})\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \cdot\left[\begin{array}{c}
x_{1}-x_{1}^{*} \\
\vdots \\
x_{n}-x_{n}^{*}
\end{array}\right]
$$

