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Systems of Differential Equations

Suppose that we are given a set of variables x1, x2, . . . , xn, each

depending on an independent variable, say, t, so that

x1 = x1(t), x2 = x2(t), . . . , xn = xn(t).

Suppose also that the dynamics of the variables are linked by n

differential equations (≡DEs) of the first-order; that is,
dx1
dt

= g1(t, x1, x2, . . . , xn)

...
dxn
dt

= gn(t, x1, x2, . . . , xn)

This set of equations is called a system of differential equations.

On the LHS are the derivatives of xi (t) with respect to t. On the RHS

is a function gi that depends on the variables x1, x2, . . . , , xn and on t.
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Examples

Kermack & McKendrick epidemic disease model (SIR, 1927)

dS

dt
= −b SI

dI

dt
= b SI − a I

dR

dt
= a I

S = S(t) = # of susceptible individuals

I = I (t) = # of infected individuals

R = R(t) = # of removed individuals (≡no longer susceptible)

a, b = constant rates

Lotka-Volterra predator-prey model (1910/1920):
dN

dt
= r N − a PN

dP

dt
= ab PN − d P

N = N(t) = prey density

P = P(t) = predator density

r = intrinsic rate of increase of the prey

a = attack rate

b = efficiency rate of predators in turning preys into new offsprings

d = rate of decline of the predators

http://www.ms.uky.edu/˜ma138 UK Math

Lecture 37



Direction Field of a System of 2 Autonomous DEs

Review the notion of the direction field of a DE of the first order

dy/dx = f (x , y). We encountered this notion just before Section 8.2

(Handout; February 15, 2017).

Consider, now a system of two autonomous differential equations
dx

dt
= g1(x , y)

dy

dt
= g2(x , y)

Assuming that y is also a function of x and using the chain rule, we

can eliminate t and obtain the DE

dy

dx
=

dy/dt

dx/dt
=

g2(x , y)

g1(x , y)

of which we can plot the direction field.
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Example (Lotka-Volterra)

Consider the system of DEs
dx

dt
= x − 4xy and

dy

dt
= 2xy − 3y .

The direction field of the differential equation
dy

dx
=

(2x − 3)y

x(1− 4y)
has been

produced with the SAGE commands in Chapter 8.

Notice that the trajectories are closed curves. Furthermore, they all seem

to revolve around the point P(3/2, 1/4). This is the point where the

factors 2x − 3 and 1− 4y of dy/dt and dx/dt, respectively, are both zero.
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Linear Systems of Differential Equations (11.1)

We first look at the case when the gi ’s are linear functions in the

variables x1, x2, ..., xn — that is,
dx1
dt

= a11(t)x1 + . . .+ a1n(t)xn + f1(t)

...
dxn
dt

= an1(t)x1 + . . .+ ann(t)xn + fn(t)

We can write the linear system in matrix form as

d

dt


x1(t)
...

xn(t)

 =


a11(t) . . . a1n(t)

...
...

an1(t) . . . ann(t)




x1(t)
...

xn(t)

+


f1(t)
...

fn(t)


and we call it an inhomogeneous system of linear, first-order

differential equations.
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We can write our inhomogeneous system of linear, first-order

differential equations as follows

dx

dt
= A(t)x+ f(t)

We are mainly interested in the case when f(t) = 0, that is,

dx

dt
= A(t)x,

an homogeneous system of linear, first-order differential equations.

Finally, we will study the case in which A(t) does not depend on t

dx

dt
= Ax,

an homogeneous system of linear, first-order differential

equations with constant coefficients.
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Example 1 (Problem #8, Exam 3, Spring 2013)

(a) Verify that the functions x(t) = e4t + 5e−t and y(t) = 4e4t − 5e−t

(whose graphs are given below) are solutions of the system of DEs
dx

dt
= y

dy

dt
= 4x + 3y

with x(0) = 6 and y(0) = −1.

(b) Rewrite the given system of DEs and its solutions in the form

d

dt

[
x

y

]
=

[
a b

c d

][
x

y

]
︸ ︷︷ ︸

system of differential equations

[
x(t)

y(t)

]
=

[
α

β

]
e4t + 5

[
γ

δ

]
e−t

︸ ︷︷ ︸
solutions

for appropriate choices of the constants a, b, c , d , α, β, γ, and δ.
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Specific Solutions of a Linear System of DEs

Consider the system
dx

dt
= Ax.

We claim that the vector-valued function

x(t) =

 v1e
λt

v2e
λt

 =

 v1

v2

 eλt

where λ, v1 and v2 are constants, is a solution of the given system of

DEs, for an appropriate choice of values for λ, v1, and v2.

More precisely,

 v1

v2

 is an eigenvector of the matrix A

corresponding to the eigenvalue λ of A.
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The Superposition Principle

Principle

Suppose that 
dx1
dt

dx2
dt

 =

 a11 a12

a21 a22

 x1(t)

x2(t)

 .

If y(t) =

 y1(t)

y2(t)

 and z(t) =

 z1(t)

z2(t)


are solutions of the given system of DEs, THEN

x(t) = c1y(t) + c2z(t)

is also a solution of the given system of DEs for any constants c1 and c2.
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The General Solution

Theorem

Let
dx

dt
= Ax

where A is a 2× 2 matrix with two real and distinct eigenvalues λ1 and

λ2 with corresponding eigenvectors v1 and v2.

THEN

x(t) = c1v1e
λ1t + c2v2e

λ2t

is the general solution of the given system of DEs.

The constants c1 and c2 depend on the initial condition.
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