MA 138 - Calculus 2 with Life Science Applications Linear Systems: Theory (Section 11.1)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

Wednesday, April 19, 2017

Equilibria and Stability

■ In Section 8.2 we already encountered the concepts of equilibria and stability, when we discussed ordinary DEs. Both concepts can be extended to systems of DEs.
■ We now restrict ourselves to the case

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x} \quad \text { with } \quad A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] .
$$

- We say that a point $\widehat{\boldsymbol{x}}=\left[\begin{array}{l}\widehat{x}_{1} \\ \widehat{x}_{2}\end{array}\right]$ is an equilibrium point of our given system of linear DEs whenever $\quad A \widehat{\mathbf{x}}=\mathbf{0}$.
■ It follows from results in Section 9.2 that if $\operatorname{det} A \neq 0$, then $(0,0)$ is the only equilibrium of our given system of linear DEs. If $\operatorname{det} A=0$, then there will be other equilibria.

■ If we start a system of DEs at an equilibrium, it remains there at all later times.

- This does not mean that if the system is in equilibrium and is perturbed by a small amount, it will return to the equilibrium.
■ Whether or not a solution will return to an equilibrium after a small perturbation is addressed by the stability of the equilibrium.
- In the case when the matrix A has two real and distinct eigenvalues, the solution of our given system of linear DEs is given by

$$
x(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

where \mathbf{v}_{1} and \mathbf{v}_{2} are the eigenvectors corresponding to the eigenvalues λ_{1} and λ_{2} of A and the constants c_{1} and c_{2} depend on the initial condition.
■ Knowing the solution will allow us to study the behavior of the solutions as $t \rightarrow \infty$ and thus address the question of stability, at least when the eigenvalues are distinct.

Classification of Equilibria

Case 1: A has two distinct real nonzero eigenvalues λ_{1} and λ_{2}

1. Both eigenvalues are negative: The equilibrium $(0,0)$ is globally stable, since the solution will approach the equilibrium $(0,0)$ regardless of the starting point. We call $(0,0)$ a sink or a stable node.
2. The eigenvalues have opposite signs: Unless we start in the direction of the eigenvector associated with the negative eigenvalue, the solution will not converge to the equilibrium $(0,0)$. We say that the equilibrium $(0,0)$ is unstable and call $(0,0)$ a saddle point.
3. Both eigenvalues are positive: The solution will not converge to $(0,0)$ unless we start at $(0,0)$. We say that the equilibrium $(0,0)$ is unstable, and we call $(0,0)$ a source or an unstable node.

Case 2: A has two complex conjugate eigenvalues $\lambda_{1,2}=\boldsymbol{\alpha} \pm i \beta$

1. $\alpha<0$: Starting from any point other than (0,0), solutions spiral into the equilibrium $(0,0)$. For this reason, the equilibrium $(0,0)$ is called a stable spiral. When we plot solutions as functions of time, they show oscillations. The amplitude of the oscillations decreases over time. We therefore call the oscillations damped.
2. $\alpha>0$: Starting from any point other than $(0,0)$, the solutions spiral out from the equilibrium $(0,0)$. For this reason, we call the equilibrium $(0,0)$ an unstable spiral. When we plot solutions as functions of time, we see that the solutions show oscillations as before, but this time their amplitudes are increasing.
3. $\boldsymbol{\alpha}=0$: Solutions spiral around the equilibrium $(0,0)$, but neither approach nor move away from the equilibrium (since the amplitude of the solutions does not change). The equilibrium $(0,0)$ is called a neutral spiral or a center. The solutions form closed curves.

Example 8

$(0,0)$ globally stable equilibrium; sink or a stable node

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\lambda_{1}=-1 \quad \lambda_{2}=-4
$$

Example $9(0,0)$ unstable equilibrium; saddle point

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
2 & -2 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\lambda_{1}=1 \quad \lambda_{2}=-2
$$

Example $10(0,0)$ unstable node; source

$$
\begin{gathered}
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\lambda_{1}=1 \quad \lambda_{2}=4
\end{gathered}
$$

Example $11(0,0)$ stable spiral; negative real part

$$
\begin{gathered}
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\lambda_{1,2}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} \\
x=20 \cdot 1 \\
x=20-1
\end{gathered}
$$

http://www.ms.uky.edu/ ~ma138

Example $12(0,0)$ unstable spiral; positive real part

$\frac{d}{d t}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$$
\lambda_{1,2}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}
$$

http://www.ms.uky.edu/ ~ma138

Example $13(0,0)$ neutral spiral or center; no real part

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
3 & 2 \\
-5 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\lambda_{1,2}= \pm i
$$

Summary of Stability at $(0,0)$

- The relationships between the characteristic polynomial, eigenvalues, trace, and determinant of a 2×2 matrix A are given by

$$
\begin{gathered}
\operatorname{det}\left(A-\lambda I_{2}\right)=\lambda^{2}-\operatorname{trace}(A) \lambda+\operatorname{det}(A)=0 \\
\operatorname{trace}(A)=\operatorname{Re}\left(\lambda_{1}\right)+\operatorname{Re}\left(\lambda_{2}\right) \quad \operatorname{det}(A)=\lambda_{1} \lambda_{2} .
\end{gathered}
$$

- Also, the discriminant of the quadratic equation $\operatorname{det}\left(A-\lambda I_{2}\right)=0$ is

$$
\Delta=[\operatorname{trace}(A)]^{2}-4 \operatorname{det}(A)
$$

Thus the condition $\Delta=0$ (\equiv repeated eigenvalue) describes the parabola $\operatorname{det}(A)=1 / 4[\operatorname{trace}(A)]^{2} \quad$ in the trace-det plane.

- Theorem: The origin $(0,0)$ of a system of two linear, homogeneous DEs with constant coefficients is a stable equilibrium \Leftrightarrow the real parts of both eigenvalues are negative $\Leftrightarrow \operatorname{det}(A)>0$ and trace $(A)<0$.

The stability properties of the equilibrium at the origin can be summarized graphically in terms of the determinant and the trace of the matrix A in the trace-det plane:

