

Course Outline for MA 138

Ch. 6: Applications of integration
Ch. 7: Integration techniques and computational methods
Ch. 8: Differential equations
Ch. 9: Linear algebra and analytic geometry
Ch. 10: Multivariable calculus
Ch. 11: Systems of differential equations

http://www.ms.uky.edu/ mal38

Course Introduction	Section 6.3	Average	Area Between Curves	Cumulative Change

Exams (Regular and Alternate)

Regular Exams will be given on

- Tuesday, February 7 - 5:00-7:00 pm
- Tuesday, March 7 - 5:00-7:00 pm
- Tuesday, April 11 - 5:00-7:00 pm
- Wednesday, May $3-8: 30-10: 30 \mathrm{pm}$

Alternate Exams for Exams 1-3 are given on the same days as the regular exams from 7:30-9:30 pm (January 7, March 7, April 11).

Review Sessions for exams 1-3 will be held on Monday February 6, March 6 and April 10 from 6:00-8:00 pm.

Grading

You will be able to obtain a maximum of $\mathbf{5 0 0}$ points in this class, divided as follows:

- Three 2-hour exams, 100 points each;
- Final exam, 100 points;
- Homework, 50 points;
- Weekly quizzes, 50 points.

Your final grade for the course will be based on the total points you have earned as follows:
A: 450-500
B: 400-449
C: 350-399
D: 300-349
E: 0-299
< 60%
http://www.ms.uky.edu/-ma138
Lectures $1 \& 2$
Course introduction

Homework

- The homework has two components: an online and handwritten homework component. Each will count as half of the final homework grade. The online problems cover the more routine aspects of the class. The written homework problems are usually more conceptual and are often motivated by problems from the Life Sciences.
- The online homework (WeBWorK) can be accessed through
https://webwork.as.uky.edu/webwork2/MA138S17/
■ Your username is your Link Blue user ID (use capital letters!) and your password is your 8 digit student ID number.
- You can try online problems as many times as you like.

The system will tell you if your answer is correct or not. You can email the TA a question from each of the problem. TAs will always do their best to respond within 24 hours.

- Don't wait until the last minute!
http://www.ms.uky.edu/-ma138
Lectures $1 \& 2$

¿Minoring in Mathematics?

To obtain a minor in Mathematics, a student who has completed MA 137/138 Calculus I and II must complete the following:

1. MA 213 - Calculus III (4 credits)
2. MA 322 - Matrix Algebra and Its Applications (3 credits)
3. Six additional credit hours of Mathematics courses (=two courses) numbered greater than 213. Possible courses include: MA 214, MA 261, MA 320, MA 321, MA 327 (Introduction to game theory), MA 330, MA 341, MA 351, MA 361, or any 400 level math course
4. We are also in the process of establishing a new cross-listed course by Fall 2017 at the upper level in Mathematics.
MA 337/BIO 337: Mathematical Modeling in the Life Sciences
Thus you need 13 additional credit hours in Mathematics classes.
http://www.ms.uky.edu/-ma138

Lectures $1 \& 2$

Course Introduction	Section 6.3	Average	Area Between Curves	Cumulative Change

Average Values

It is easy to calculate the average value of finitely many numbers $y_{1}, y_{2}, \ldots, y_{n}$:

$$
y_{\mathrm{avg}}=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}
$$

But how do we compute the average temperature during a day if infinitely many temperature readings are possible?

In general, let's try to compute the average value of a function $y=f(x)$, $a \leq x \leq b$. We start by dividing the interval $[a, b]$ into n equal subintervals, each with length $\Delta x=(b-a) / n$. Then we choose points c_{1}, \ldots, c_{n} in successive subintervals and calculate the average of the numbers $f\left(c_{1}\right), \ldots, f\left(c_{n}\right)$:

$$
\frac{f\left(c_{1}\right)+\cdots+f\left(c_{n}\right)}{n}
$$

http://www.ms.uky.edu/ ma138

Section 6.3: Applications of Integration

We are interested in the following three applications of integrals:
(1) average of a continuous function on $[a, b]$;
(2) area between curves;
(3) cumulative change.
http://www.ms.uky.edu/-ma138
Lectures $1 \& 2$

Course Introduction	Section 6.3	Average	Area Between Curves	Cumulative Change

Since $\Delta x=(b-a) / n$, we can write $1 / n=\Delta x /(b-a)$ and the average value becomes

$$
\frac{f\left(c_{1}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x}{b-a}=\frac{1}{b-a} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

If we let n increase, we would be computing the average value of a large number of closely spaced values. More precisely,

$$
\lim _{n \rightarrow \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Average of a Continuous Function on $[a, b]$

Assume that $f(x)$ is a continuous function on $[a, b]$. The average value of f on the interval $[a, b]$ is defined to be

$$
f_{\mathrm{avg}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \text {, }
$$

[^0]Lectures $1 \& 2$

Geometric Meaning

Mean Value Theorem for Definite Integrals

Assume that $f(x)$ is a continuous function on $[a, b]$. Then there exists a number $c \in[a, b]$ such that

$$
f(c)(b-a)=\int_{a}^{b} f(x) d x
$$

That is, when f is continuous, there exists a number c such that $f(c)=f_{\text {avg }}$. If f is a continuous, positive valued function, $f_{\text {avg }}$ is that number such that the rectangle with base $[a, b]$ and height $f_{\text {avg }}$ has the same area as the region ${ }^{y}$ finderneath the graph of f from a to b.

http://www.ms.uky.edu/ ${ }^{\text {mal }}$. 38

Lectures $1 \% 2$

Course Introduction	Section 6.3	Average	Area Between Curves	Cumulative Change

Area Between Curves

Assume f and g are continuous and $f(x) \geq g(x)$ for all x in $[a, b]$. The area A of the region bounded by the curves $y=f(x), y=g(x)$, and the $\operatorname{lines} x=a, x=b$, is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x .
$$

http://www.ms.uky.edu/-ma138
Lectures $1 \& 2$

Example 1 (Online Homework \#14)

If a cup of coffee has temperature $95^{\circ} \mathrm{C}$ in a room where the temperature is $20^{\circ} \mathrm{C}$, then, according to Newton's Law of Cooling, the temperature of the coffee after t minutes is

$$
T(t)=20+75 e^{-t / 50}
$$

What is the average temperature (in degrees Celsius) of the coffee during the first half hour?
http://www.ms.uky.edu/-mal38
Lectures 1 \& 2
Course introduction

Example 2 (Online Homework \#2)

Find the area of the region enclosed by the two functions $y=7 x^{2}$ and $y=x^{2}+6$.

Example 7 (Online Homework \#5)

Find the value(s) of c such that the area of the region bounded by the parabolae $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ is 1944.

http://www.ms.uky.edu/-ma138

Lectures 1 \& 2

Course Introduction	Section 6.3	Average	Area Between Curves	Cumulative Change

More generally, the IVP: $\quad \frac{d N}{d t}=f(t) \quad N(a)=N_{a} \quad$ has solution

$$
N(t)-N(a)=\int_{a}^{t} f(u) d u=\int_{a}^{t} \frac{d N}{d u} d u
$$

That is

$$
\left\{\begin{array}{c}
\text { cumulative change } \\
\text { on the interval }[a, t]
\end{array}\right\}=\int_{a}^{t}\left\{\begin{array}{c}
\text { instantaneous rate of } \\
\text { change at time } u
\end{array}\right\} d u
$$

Similarly, if $p(t)$ is the position function of an object at time t, then

$$
\begin{gathered}
\frac{d p}{d t}=v(t) \\
\text { gives } \leadsto \underbrace{p(b)-p(a)}_{\text {distance traveled on }[a, b]}=\int_{a}^{b} v(t) d t=\int_{a}^{b} \frac{d p}{d t} d t .
\end{gathered}
$$

Cumulative Change

Suppose that we have a population whose size at time t is given by $N(t)$. Suppose further that its rate of growth is given by the initial value problem IVP:

$$
\frac{d N}{d t}=f(t) \quad N(0)=N_{0}
$$

Then, by Part I of the Fundamental Theorem of Calculus we have that

$$
N(t)=\int_{0}^{t} f(u) d u+C
$$

represents all antiderivatives of $f(t)$ [or $d N / d t]$.
$\begin{aligned} & \text { Now, } N(0)=\underbrace{\int_{0}^{0} f(u) d u}_{=0}+C=C \\ & \text { so } \quad C=N_{0}=N(0) . \text { Therefore } \\ & N(t)=\int_{0}^{t} f(u) d u+N_{0} \quad \text { or } \quad N(t)-N(0)=\int_{0}^{t} f(u) d u .\end{aligned}$
http://www.ms.uky.edu/-mal38
Lectures 1 \& 2
Course Introduction
Section 6.3
Average
Area Between Curves
Cumulative Change

Example 8 (Problem \#18, Section 6.3, page 321)

Suppose the change in biomass $B(t)$ at time t during the interval $[0,12]$ follows the equation

$$
\frac{d B}{d t}=\cos \left(\frac{\pi}{6} t\right)
$$

How does the biomass at time $t=12$ compare to the biomass at time $t=0$?

Example 9 (Problem \#22, Section 6.3, page 322)

If $\frac{d w}{d x}$ represents the rate of change of the weight of an organism of age x, explain what

$$
\int_{3}^{5} \frac{d w}{d x} d x
$$

means.

[^0]: http://www.ms.uky.edu/-ma138

