		Rule

MA 138 - Calculus 2 with Life Science Applications The Substitution Rule (Section 7.1)

Alberto Corso

(alberto.corso@ukv.edu)

Department of Mathematics University of Kentucky

Wednesday, January 17, 2017

The Substitution Rule

Section 7.1: The Substitution Rule

The substitution rule is the chain rule in integral form. We therefore begin by recalling the chain rule.

Suppose that we wish to differentiate

$$f(x) = (6x^2 + 3)^3$$

This is clearly a situation in which we need to use the chain rule.

We set $u = 6x^2 + 3$ so that $f(u) = u^3$. The chain rule, using Leibniz notation, tells us that

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx} = 3u^2 \cdot (6 \cdot 2x) = 3(6x^2 + 3)^2(12x).$$

http://www.ms.uky.edu/~ma138

The Substitution Rule

Reversing these steps and integrating along the way, we get

$$\int 3(6x^2+3)^2(12x)\,dx = \int 3u^2\,du = u^3 + C = (6x^2+3)^3 + C$$

In the first step, we substituted u for $6x^2 + 3$ and used du = 12x dx.

This substitution simplified the integrand.

At the end, we substitute back $6x^2 + 3$ for u to get the final answer in terms of x.

We summarize this discussion, by stating the following general principle:

Substitution Rule for Indefinite Integrals

If
$$u = g(x)$$
, then

http://www.ms.uky.edu/~ma138

http://www.ms.uky.edu/~ma138

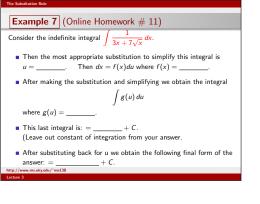
The Substitution Rule

$$\int f[\underline{g}(x)] \underbrace{g'(x) \, dx}_{du} = \int f(u) \, du$$

Example 1

Evaluate the indefinite integral $\int \cos x \sin x \, dx$

- by using the substitution u = cos x;
- by using the substitution u = sin x;
- by using the trigonometric identity sin(2x) = 2 sin x cos x.


Compare your answers.

http://www.ms.uky.edu/~ma138 Lecture 3

Lectu	ire i	

The Substitution Rule	The Substitution Rule
Example 2	Substitution Rule for Definite Integrals
Evaluate the indefinite integral $\int (2x+1)e^{x^2+x} dx$.	Part II of the FTC says that when we evaluate a definite integral, we must find an antiderivative of the integrand and then evaluate the antiderivative at the limits of integration.
	When we use the substitution $u = g(x)$ to find an antiderivative of an integrand, the antiderivative will be given in terms of u at first.
	To complete the calculation, we can proceed in either of two ways:
	 we can leave the antiderivative in terms of u and change the limits of integration according to u = g(x);
	(2) we can substitute $g(x)$ for u in the antiderivative and then evaluate the antiderivative at the limits of integration in terms of x .
http://www.ms.uky.edu/~ma138	http://www.ms.uky.edu/*ma138
Lecture 3	Lecture 3
The Substitution Rule	The Substitution Rule
The Substitution Rule for Definite Integrals	Example 3 (Online Homework # 6)
Substitution Rule for Definite Integrals The first method (1) is the more common one, and we summarize the	Example 3 (Online Homework # 6)
Substitution Rule for Definite Integrals The first method (1) is the more common one, and we summarize the procedure as follows:	Example 3 (Online Homework # 6)
Substitution Rule for Definite Integrals The first method (1) is the more common one, and we summarize the procedure as follows: Substitution Rule for Definite Integrals	Example 3 (Online Homework # 6)
Substitution Rule for Definite Integrals The first method (1) is the more common one, and we summarize the procedure as follows: Substitution Rule for Definite Integrals	Example 3 (Online Homework # 6)
Substitution Rule for Definite Integrals The first method (1) is the more common one, and we summarize the procedure as follows: Substitution Rule for Definite Integrals	Example 3 (Online Homework # 6)

The Substitution Rule	The Substitution Rule
Example 4 (Online Homework # 8)	Example 4, cont.ed (Online Homework # 8)
Consider the indefinite integral $\int \frac{3}{3 + e^x} dx$. • The most appropriate substitution to simplify this integral is $u = f(x)$ where $f(x) = $ We then have $dx = g(u)du$ where $g(u) = $ (Hint: you need to back substitute for x in terms of u for this part.) • After substituting into the original integral we obtain $\int h(u) du$ where $h(u) = $ • To evaluate this integral rewrite the numerator as $3 = u - (u - 3)$. Simplify, then integrate, thus obtaining $\int h(u) du = H(u)$ where $H(u) = $ + C.	• After substituting back for u we obtain our final answer $\int \frac{3}{3 + e^x} dx = \underline{\qquad} + C.$
http://www.ms.uky.edu/~ma138	http://www.ms.uky.edu/"ma138
Lecture 3	Lecture 3
The Substitution Rule	The Substitution Rule
Example 5 (Online Homework # 9)	Example 6 (similar to Example 5)
Consider the definite integral $\int_0^1 x^2 \sqrt{5x+6} dx$.	Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3} + 2} dx$.
Consider the definite integral $\int_0^1 x^2 \sqrt{5x+6} dx$. • Then the most appropriate substitution to simplify this integral is	Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3} + 2} dx$. • Then the most appropriate substitution to simplify this integral is
Consider the definite integral $\int_0^1 x^2 \sqrt{5x + 6} dx$. • Then the most appropriate substitution to simplify this integral is $u = \underline{\qquad}$. Then $dx = f(x)du$ where $f(x) = \underline{\qquad}$. • After making the substitution and simplifying we obtain the integral $\int_a^b g(u) du$	Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3}+2} dx$. • Then the most appropriate substitution to simplify this integral is $u = \underline{\qquad}$. Then $dx = f(x)du$ where $f(x) = \underline{\qquad}$. • After making the substitution and simplifying we obtain the integral $\int_{a}^{b} g(u) du$
Consider the definite integral $\int_0^1 x^2 \sqrt{5x + 6} dx$. • Then the most appropriate substitution to simplify this integral is $u = _$. Then $dx = f(x)du$ where $f(x) = _$. • After making the substitution and simplifying we obtain the integral $\int_a^b g(u) du$ where $g(u) = _$. • This definite integral has value =	Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3} + 2} dx$. • Then the most appropriate substitution to simplify this integral is $u = _$. Then $dx = f(x)du$ where $f(x) = _$. • After making the substitution and simplifying we obtain the integral $\int_{a}^{b} g(u) du$ where $g(u) = _$. $a = _$ and $b = _$. • This definite integral has value =
Consider the definite integral $\int_0^1 x^2 \sqrt{5x + 6} dx$. • Then the most appropriate substitution to simplify this integral is $u = _$. Then $dx = f(x) du$ where $f(x) = _$. • After making the substitution and simplifying we obtain the integral $\int_a^b g(u) du$ where $g(u) = _$.	Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3} + 2} dx$. • Then the most appropriate substitution to simplify this integral is $u = _$. Then $dx = f(x)du$ where $f(x) = _$. • After making the substitution and simplifying we obtain the integral $\int_{a}^{b} g(u) du$ where $g(u) = _$. $a = _$ and $b = _$.

