Integration by Parts (Section 7.2)

MA 138 - Calculus 2 with Life Science Applications

Alberto Corso (alberto.corso@ukv.edu)

Department of Mathematics University of Kentucky

Friday, January 20, 2017

Lecture 4

The Logistic Growth Model

time t satisfies the initial value problem

In Sections 3.3 and 4.1 you should have introduced the logistic growth model. In this growth model it is assumed that the population size N(t) at

 $\frac{dN}{dt} = r N \left(1 - \frac{N}{K} \right) \qquad N(0) = N_0,$

where
$$r$$
 (=growth rate) and K (=carrying capacity) are positive constants.

Rewriting this differential equation as

$$\frac{1}{N}\frac{dN}{dt} = r\left(1 - \frac{N}{K}\right)$$
save that the per capita growth rate in the

says that the per capita growth rate in the logistic equation is a linearly decreasing function of population size. http://www.ms.ukv.edu/~ma138

Last time we integrated $\int \frac{3}{3+e^x} dx$ by using the substitution $u=3+e^x$.

This lead to $du = e^x dx = (u - 3) dx$. Thus

$$\int \frac{3}{3+e^x} dx \quad \longleftrightarrow \quad \int \frac{3}{u} \cdot \frac{du}{u-3} = \int \frac{3}{u(u-3)} du.$$

A natural question to ask is:

"Why should I care about integrals of this form?"

We will study more systematically integrals of this form in Section 7.3.

In Chapter 8 we will see that in order to solve the logistic differential

Next. I will give you a good reason.

equation we first separate the variables to obtain $\frac{1}{N(1-N/K)} dN = r dt.$

Then we integrate both sides with respect to
$$N$$
 and t

 $\int \frac{K}{M(N-K)} dN = \int -r dt.$

$$\int \frac{1}{N(N-K)} dN = \int -r dx$$

After several calculations we obtain that the solution of the IVP is

several calculations we obtain that
$$N(t)$$
 solution of the IVP is
$$N(t) = \frac{K}{1 + (K/N_0 - 1)e^{-rt}}.$$

http://www.ms.ukv.edu/~ma138

