About Example 4 from the previous lecture

MA 138 - Calculus 2 with Life Science Applications Integration by Parts
 (Section 7.2)

Alberto Corso

〈alberto.corso@uky.edu〉

Department of Mathematics
University of Kentucky
Friday, January 20, 2017

The Logistic Growth Model

In Sections 3.3 and 4.1 you should have introduced the logistic growth model. In this growth model it is assumed that the population size $N(t)$ at time t satisfies the initial value problem

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) \quad N(0)=N_{0}
$$

where r (=growth rate) and K (=carrying capacity) are positive constants. Rewriting this differential equation as

$$
\frac{1}{N} \frac{d N}{d t}=r\left(1-\frac{N}{K}\right)
$$

says that the per capita growth rate in the logistic equation is a linearly decreasing function of population size.

Section 7.2: Integration by Parts

Integration by parts is the product rule in integral form.
Let $f=f(x)$ and $g=g(x)$ be differentiable functions. Then, differentiating the product $f g$ with respect to x yields

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

or, after rearranging,

$$
f g^{\prime}=(f g)^{\prime}-f^{\prime} g .
$$

Integrating both sides with respect to x, we find that

$$
\int f g^{\prime} d x=\int(f g)^{\prime} d x-\int f^{\prime} g d x
$$

Since $f g$ is an antiderivative of $(f g)^{\prime}$, it follows that

$$
\int(f g)^{\prime} d x=f g+C
$$

http://www.ms.uky.edu/ 'ma138
Lecture 4

Theory	Examples
0.0000	

Example 1 (Problem \#61, Section 7.2, page 343)
Evaluate the indefinite integral: $\int \ln x d x$.

Therefore

$$
\int f g^{\prime} d x=f g-\int f^{\prime} g d x
$$

(Note that the constant C can be absorbed into the indefinite integral on the right-hand side.) Because $f^{\prime}=d f / d x$ and $g^{\prime}=d g / d x$, we can also write the preceding equation in the short form

$$
\int f d g=f g-\int g d f
$$

We summarize this discussion, by stating the following general rule:

Rule for Integration by Parts

If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\begin{gathered}
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x \\
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
\end{gathered}
$$

http://www.ms.uky.edu/-ma138
Lecture 4

Example 2 (Online Homework \# 9)

If $g(1)=-5, \quad g(5)=2$ and $\quad \int_{1}^{5} g(x) d x=-10, \quad$ evaluate

$$
\int_{1}^{5} x g^{\prime}(x) d x
$$

