MA 138 - Calculus 2 with Life Science Applications Rational Functions and Partial Fractions (Section 7.3)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics University of Kentucky
Wednesday, January 25, 2017

Example 1

Evaluate the following indefinite integrals

- $\int \frac{5}{(3 x+2)^{4}} d x$;
- $\int \frac{2 x-2}{\left(x^{2}-2 x+5\right)^{3}} d x$.
http://www.ms.uky.edu/-ma138

Section 7.3: Rational Functions and Partial Fractions

Proper Rational Functions

- A rational function f is the quotient of two polynomials. That is,

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials.

- To integrate such a function, we write $f(x)$ as a sum of a polynomial and simpler rational functions (=partial-fraction decomposition).
- These simpler rational functions, which can be integrated with the methods we have learned, are of the form

$$
\frac{A}{(a x+b)^{n}} \quad \text { or } \quad \frac{B x+C}{\left(a x^{2}+b x+c\right)^{n}}
$$

where A, B, C, a, b, and c are constants and n is a positive integer.

- In this form, the quadratic polynomial $a x^{2}+b x+c$ can no longer be factored into a product of two linear functions with real coefficients.

Algebra Review

Dividing polynomials is much like the familiar process of dividing numbers. This process is the long division algorithm for polynomials.

Long Division Algorithm

If $A(x)$ and $B(x)$ are polynomials, with $B(x) \neq 0$, then there exist unique polynomials $Q(x)$ and $R(x)$, where $R(x)$ is either 0 or of degree strictly less than the degree of $B(x)$, such that

$$
A(x)=Q(x) \cdot B(x)+R(x)
$$

The polynomials $A(x)$ and $B(x)$ are called the dividend and divisor, respectively; $Q(x)$ is the quotient and $R(x)$ is the remainder.

http://www.ms.uky.edu/ $/$ mal38

Lecture 6

- Synthetic division is a quick method of dividing polynomials; it can be used when the divisor is of the form $x-c$, where c is a number. In synthetic division we write only the essential part of the long division table.
- In synthetic division we abbreviate the polynomial $A(x)$ by writing only its coefficients.
Moreover, instead of $B(x)=x-c$, we simply write ' c.'
Writing c instead of $-c$ allows us to add instead of subtract!

Example 2 (revisited): Divide

$$
A(x)=2 x^{2}-x-4 \text { by } B(x)=x-3
$$

We obtain $Q(x)=2 x+5$ and $R(x)=11$. That is,

$$
2 x^{2}-x-4=(2 x+5)(x-3)+11
$$

Example 2

Divide the polynomial

$$
A(x)=2 x^{2}-x-4 \text { by } B(x)=x-3
$$

(Complete the above table and check your work!)
http://www.ms.uky.edu/-ma138
Lecture 6

Example 3 (Online Homework \# 3)

Use the Long Division Algorithm to write $f(x)$ as a sum of a polynomial and a proper rational function

$$
f(x)=\frac{x^{3}}{x^{2}+4 x+3}
$$

Partial Fraction Decomposition (linear factors)

Case of Distinct Linear Factors

$Q(x)$ is a product of m distinct linear factors. $Q(x)$ is thus of the form

$$
Q(x)=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{m}\right)
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are the m distinct roots of $Q(x)$.
The rational function can then be written as

$$
\frac{P(x)}{Q(x)}=\frac{1}{a}\left[\frac{A_{1}}{x-\alpha_{1}}+\frac{A_{2}}{x-\alpha_{2}}+\cdots+\frac{A_{m}}{x-\alpha_{m}}\right]
$$

We will see in the next examples how the constants $A_{1}, A_{2}, \ldots, A_{m}$ are determined.

Example 3 (cont.d)

Evaluate the indefinite integral: $\int \frac{x^{3}}{x^{2}+4 x+3} d x$.

Note: from the calculations carried out in the first part of the example, we know that our problem reduces to

$$
\int(x-4) d x+\int \frac{13 x+12}{(x+3)(x+1)} d x
$$

http://www.ms.uky.edu/- mal38

Lecture 6

(Heaviside) cover-up method

We illustrate this method by using the previous example:

$$
\begin{gather*}
\frac{13 x+12}{(x+3)(x+1)}=\frac{A}{x+3}+\frac{B}{x+1}=\frac{A(x+1)+B(x+3)}{(x+3)(x+1)} \\
A(x+1)+B(x+3)=13 x+12 \tag{*}
\end{gather*}
$$

Set $x=-1$ in $(*)$. We obtain
Set $x=-3$ in (*). We obtain $A \cdot 0+B \cdot(-1+3)=13(-1)+12$

$$
A \cdot(-3+1)+0=13(-3)+12
$$

$$
\begin{gathered}
B \cdot(2)=-1 \\
B=-1 / 2
\end{gathered}
$$

$$
A \cdot(-2)=-27
$$

ant

$$
A=27 / 2
$$

Example 5 (Online Homework \# 6)

Evaluate the indefinite integral: $\int \frac{1}{x(x+1)} d x$.

