	Improper Integrals
MA 138 – Calculus 2 with Life Science Applications Improper Integrals (Section 7.4)	 We discuss definite integrals of two types with the following characteristics: (1) one or both limits of integration are infinite; that is, the integration interval is unbounded. For example
Alberto Corso (alberto.corso@uky.edu) Department of Mathematics University of Kentucky Monday, January 30, 2017	$\int_{1} e^{-\sum dx} e^{-\sum dx} \int_{-\infty} 1 + x^{2-2x},$ (These integrals are very important in Probability and Statistics!) (2) the integrand becomes infinite at one or more points of the interval of integration. For example $\int_{-1}^{1} \frac{1}{x^{2}} dx \text{or} \int_{0}^{1} \frac{1}{2\sqrt{x}} dx.$ We call such integrals improper integrals.
http://www.ms.uky.edu/"ma138	http://www.ms.uky.edu/*ma138
Lecture 8	Lecture 8
Type 1: Unbounded Intervals	Example 1 (Online Homework # 1)
Let $f(x)$ be continuous on the interval $[a, \infty)$. If	Determine if the improper integral converges and, if so, evaluate it. $\int_{0}^{0} dx$
$\lim_{b \to \infty} \int_{a} r(x) dx$ exists and has a finite value, we say that the improper integral	$\int_{-\infty} e^{\omega x} dx.$
$\lim_{b \to \infty} \int_{a}^{a} f(x) dx$ exists and has a finite value, we say that the improper integral $\int_{a}^{\infty} f(x) dx$ converges and define $\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx$ Otherwise, we say that the improper integral diverges .	$\int_{-\infty}^{\infty} e^{ax} dx.$ $y = e^{3x}$
$\lim_{b \to \infty} \int_{a}^{a} f(x) dx$ exists and has a finite value, we say that the improper integral $\int_{a}^{\infty} f(x) dx$ converges and define $\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx$ Otherwise, we say that the improper integral diverges . Analogous definitions apply when the lower limit of integration is infinite.	$\int_{-\infty}^{\infty} e^{ax} dx.$ $y = e^{3x}$

Remarks

Example 6 (Example #5, Section 7.4, page 356)

Lecture 8

http://www.ms.uky.edu/~ma138