MA 138 – Calculus 2 with Life Science Applications Improper Integrals (Section 7.4) Alberto Corso (alberto.corso@uky.edu) Department of Mathematics University of Kentucky Wednesday, February 1, 2017	We discuss definite integrals of two types with the following characteristics: (1) one or both limits of integration are infinite; that is, the integration interval is unbounded. For example $\int_{1}^{\infty} e^{-x} dx \text{or} \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx;$ (These integrals are very important in Probability and Statistics!) (2) the integrand becomes infinite at one or more points of the interval of integration. For example $\int_{-1}^{1} \frac{1}{x^2} dx \text{or} \int_{0}^{1} \frac{1}{2\sqrt{x}} dx.$
nttp://www.ms.iky.obs/~ms138 exture 8	We call such integrals improper integrals . http://www.ms.uky.edu/~ms138 tectmr.9
Type 2: Unbounded Integrand	Example 1 (Problem #12, Section 7.4, page 362)
 What if the integrand becomes infinite at one or both endpoints of the interval of integration? If f is continuous on (a, b] and lim_{x→a⁺} f(x) = ±∞, we define ∫_a^b f(x) dx = lim_{x→a⁺} ∫_c^b f(x) dx provided that this limit exists. If f is continuous on [a, b] and lim_{x→a⁻} f(x) = ±∞, we define ∫_a^b f(x) dx := lim_{x→b⁻} ∫_a^c f(x) dx provided that this limit exists. 	Determine whether the improper integral $\int_{1}^{e} \frac{1}{x\sqrt{\ln x}} dx$ is convergent. If the integral is convergent, compute its value.
nttp://www.ms.uky.edu/"ma138	http://www.ms.uky.edu/"ma138

F

Improper Integrals

Example 2 (Problem #26, Section 7.4, page 362)	Example 3 (Online Homework #7)
Determine whether the improper integral	Determine whether the improper integral
$\int_{a}^{e} \frac{1}{x \ln x} dx$	$\int_{-9}^{9} \frac{4}{(x-6)^2} dx$
$J_1 \times \ln x$ is convergent. If the integral is convergent, compute its value.	$J_0 \ (x-6)^2$ is convergent. If the integral is convergent, compute its value.
······································	is convergent. In the integral is convergent, compute its value.
http://www.ms.uky.edu/~ma138	http://www.ms.uky.edu/"ma138
Lecture 9	Lecture 9
Example 4 (Problem #34, Section 7.4, page 363)	
Example 4 (Problem $\#$ 54, Section 7.4, page 303)	Example 5 (Problem #15, Section 7.4, page 362)
Example 4 (Problem #34, Section 7.4, page 303) Let p be a positive real number. Show that	Example 5 (Problem #15, Section 7.4, page 362) Determine whether the improper integral
Let p be a positive real number. Show that	Determine whether the improper integral
Let p be a positive real number. Show that	
	Determine whether the improper integral $\int_{-1}^{1} \ln x dx.$
Let p be a positive real number. Show that	Determine whether the improper integral $\int_{-1}^{1} \ln x dx.$
Let p be a positive real number. Show that $\int_{0}^{1} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{1-p} & \text{for } 0$	Determine whether the improper integral $\int_{-1}^{1} \ln x dx.$
Let p be a positive real number. Show that	Determine whether the improper integral $\int_{-1}^{1} \ln x dx.$
Let <i>p</i> be a positive real number. Show that $\int_{0}^{1} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{1-p} & \text{for } 0 E.g.: \int_{0}^{1} \frac{1}{x} dx and \int_{0}^{1} \frac{1}{x^{2}} dx both diverge (as p = 1, 2, respectively).$	Determine whether the improper integral $\int_{-1}^{1} \ln x dx.$
Let p be a positive real number. Show that $\int_{0}^{1} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{1-p} & \text{for } 0$	Determine whether the improper integral $\int_{-1}^{1} \ln x dx.$