MA 138 - Calculus 2 with Life Science Applications

 Improper Integrals (Section 7.4)Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky
Wednesday, February 1, 2017

Improper Integrals

We discuss definite integrals of two types with the following characteristics:
(1) one or both limits of integration are infinite; that is, the integration interval is unbounded. For example

$$
\int_{1}^{\infty} e^{-x} d x \quad \text { or } \quad \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x
$$

(These integrals are very important in Probability and Statistics!)
(2) the integrand becomes infinite at one or more points of the interval of integration. For example

$$
\int_{-1}^{1} \frac{1}{x^{2}} d x \quad \text { or } \quad \int_{0}^{1} \frac{1}{2 \sqrt{x}} d x
$$

We call such integrals improper integrals.
http://www.ms.uky.edu/-ma138
Lecture 9

Type 2: Unbounded Integrand

What if the integrand becomes infinite at one or both endpoints of the interval of integration?

- If f is continuous on $(a, b]$ and $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, we define

$$
\int_{a}^{b} f(x) d x:=\lim _{c \longrightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

provided that this limit exists.

- If f is continuous on $[a, b)$ and $\lim _{x \rightarrow b^{-}} f(x)= \pm \infty$, we define

$$
\int_{a}^{b} f(x) d x:=\lim _{c \longrightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

provided that this limit exists.

If the limit does not exist, we say that the integral diverges.
http://www.ms.uky.edu/-ma138
Lecture 9

Example 2 (Problem \#26, Section 7.4, page 362)

Determine whether the improper integral

$$
\int_{1}^{e} \frac{1}{x \ln x} d x
$$

is convergent. If the integral is convergent, compute its value.

Example 3 (Online Homework \#7)

Determine whether the improper integral

$$
\int_{0}^{9} \frac{4}{(x-6)^{2}} d x
$$

is convergent. If the integral is convergent, compute its value.

Example 4 (Problem \#34, Section 7.4, page 363)

Let p be a positive real number. Show that

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=\left\{\begin{array}{cl}
\frac{1}{1-p} & \text { for } 0<p<1 \\
\infty & \text { for } p \geq 1
\end{array}\right.
$$

Example 5 (Problem \#15, Section 7.4, page 362)

Determine whether the improper integral

$$
\int_{-1}^{1} \ln |x| d x
$$

is convergent. If the integral is convergent, compute its value.
E.g.: $\int_{0}^{1} \frac{1}{x} d x$ and $\int_{0}^{1} \frac{1}{x^{2}} d x$ both diverge (as $p=1,2$, respectively).
E.g.: $\int_{0}^{1} \frac{1}{\sqrt{x}} d x=2$ and $\int_{0}^{1} \frac{1}{\sqrt[3]{x}} d x=\frac{3}{2}$ (as $p=1 / 2,1 / 3$, respectively).

