	Arbitrary Systems of Linear Equations			
MA 138 – Calculus 2 with Life Science Applications	A system of m equations in n variables can be written in the form			
Linear Systems	$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$			
(Section 9.1)	$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$			
All subs Course	$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$			
(alberto corso@uky.edu)	The variables are now x1 x2			
(undertoitoba cariyitada)	 The coefficients a_{ii} on the left-hand side have two subscripts. The 			
Department of Mathematics	first subscript (that is, 'i') indicates the equation, and the second			
University of Kentucky	subscript (that is 'j') indicates to which variable a_{ij} corresponds to.			
Monday, February 27, 2017	 Double subscripts are a convenient way of labeling the coefficients. 			
	The subscripts on the b _i 's on the right-hand side indicate the			
http://www.ms.uky.edu/~ma138	equation. http://www.ms.uky.edu/~ma138			
Lecture 20	Lecture 20			
The Gaussian Elimination Method	As seen before, the three basic operations in the Gaussian elimination			
We transform the given system of linear equations into an	method make changes only to the coefficients of the variables. Thus we			
equivalent one (\equiv the new system has the same solutions as the old one) in upper triangular form	will work on the augmented matrix			
To do so, we will use the following three basic operations:	uma uma uma u			
1. multiplying an equation by a nonzero constant	$ a_{11} a_{12} \cdots a_{1n} b_1$			
2. adding one equation to another	$a_{2nd row} \rightarrow a_{21} a_{22} \cdots a_{2n} b_2$			
3. rearranging the order of the equations				
I his method is also called Gaussian elimination method.	athrow a a a a a a b			
As seen before, the general linear system may have				
 exactly one solution 	The entry a_{ij} of the $m \times n$ matrix on the left have two subscripts: The entry a_{ij} is located in the <i>i</i> th row and the <i>i</i> th column			
• no solution $(\equiv$ we say that the system is inconsistent)	The $m \times 1$ matrix on the right (\equiv with the b_i 's) is called a column vector.			
 infinitely many solutions 				
Infinitely many solutions				

Geometric Remarks	Example 1
 '2' we know that systems of linear equations in two variables correspond to intersecting lines in the plane. '3' we can visualize that systems of linear equations in three variables correspond to intersecting planes in the space. 'n' Stretching our imagination, systems of linear equations in n ≥ 4 variables correspond intersecting hyperplanes in the n-dimensional space. Ideally the systems that we would like to encounter have the same number of equations as variables. This need not be the case. A system with fewer equations than variables is said to be underdetermined. They frequently have infinitely many solutions. A system with more equations than variables is said to be overdetermined. They frequently are inconsistent. 	Find the solution of the system of linear equations $\begin{cases} 3x_1 + 5x_2 - x_3 = 10\\ 2x_1 - x_2 + 3x_3 = 9\\ 4x_1 + 2x_2 - 3x_3 = -1 \end{cases}$
http://www.ms.uky.edu/*ma138	http://www.ms.uky.edu/"ma138
Letture 20	Locure 20
Example 2 (Problem # 7, Exam 2, Spring '14)	Example 3 (Online Homework # 9)
(a) Find the solution(s) for the system of linear equations corresponding to the following augmented matrix $\begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \\ 0 & -2 & -2 \\ 0 & -2 & -2 \end{bmatrix}$	Determine the value of k for which the following system $\begin{cases} x + y + 5z = -3 \\ x + 2y - 3z = 0 \\ 3x + 8y + kz = 7 \end{cases}$

http://www.ms.uky.edu/~ma138 Lecture 20

Lecture 20

http://www.ms.uky.edu/~ma138

Example 4 (Online Homework # 10)

A dietician is planning a meal that supplies certain quantities of vitamin C, calcium and magnesium. Three foods will be used.

The nutrients supplied, measured in milligrams (mg), by one unit of each food and the dietary requirements are given in the table below

Nutrient	Food 1	Food 2	Food 3	Total Required (mg)
Vitamin C	30	60	45	525
Calcium	30	80	65	665
Magnesium	20	55	40	445

The dietician is interested in determining the quantities (in units) x, y and z of Food 1, Food 2, and Food 3, respectively. Set-up a system of equations for this problem and solve it.

Example 5 (Problem # 27, Section 9.1, p. 443)

Find the solution of the system of linear equations

$$y + x = 3$$
$$z - y = -1$$
$$x + z = 2$$

This is how the configuration of the three planes looks like.

http://www.ms.uky.edu/~ma138
Lecture 20

Example 6

http://www.ms.uky.edu/~ma138 Lecture 20

Find the solution of the system of linear equations

$$\begin{cases} x+y-z=3\\ x-y+z=3\\ y-z=1.5 \end{cases}$$

This is how the configuration of the three planes looks like.

http://www.ms.uky.edu/~ma138