	Outline
MA 138 – Calculus 2 with Life Science Applications Matrices	We already saw that when transforming a system of linear equations into an equivalent one by using the Gaussian Elimination Process, we make changes only to the coefficients of the variables.
(Section 9.2)	For this reason we introduced the notion of an augmented matrix.
Alberto Corso (alberto.corso@uky.edu) Department of Mathematics University of Kentucky	Now, we formalize again the notion of a matrix and then we learn various operations that we can perform on matrices. More precisely, we will focus on basic matrix operations ; matrix multiplication ;
Wednesday, March 1, 2017	 inverse of matrices; application to solving systems of n linear equations in n variables.
http://www.ms.uky.edu/*ma138	http://www.ms.uky.edu/*ma138
Lecture 21	Lecture 21
The Guiding Light	Matrices
	Watrices
• A simple key observation: To solve $5x = 10$ for x, we just divide both sides by $5 \ (\equiv \text{ multiply both sides by } 1/5 = 5^{-1})$. That is, $5x = 10 \text{cm} 5^{-1} \cdot 5x = 5^{-1} \cdot 10 \text{cm} x = 2$ as $5^{-1} \cdot 5 = 1$ and $5^{-1} \cdot 10 = 2$.	An $m \times n$ matrix A is a rectangular array of numbers with m rows and n columns. We write
■ A simple key observation: To solve $5x = 10$ for x, we just divide both sides by 5 (\equiv multiply both sides by $1/5 = 5^{-1}$). That is, $5x = 10 \iff 5^{-1} \cdot 5x = 5^{-1} \cdot 10 \iff x = 2$	An $m \times n$ matrix A is a rectangular array of numbers with m rows and n columns. We write
 A simple key observation: To solve 5x = 10 for x, we just divide both sides by 5 (≡ multiply both sides by 1/5 = 5⁻¹). That is, 5x = 10 ∞∞ 5⁻¹ ⋅ 5x = 5⁻¹ ⋅ 10 ∞∞ x = 2 as 5⁻¹ ⋅ 5 = 1 and 5⁻¹ ⋅ 10 = 2. We will learn how to write a system of n linear equations in n 	An $m \times n$ matrix A is a rectangular array of numbers with m rows and n
 A simple key observation: To solve 5x = 10 for x, we just divide both sides by 5 (≡ multiply both sides by 1/5 = 5⁻¹). That is, 5x = 10 ↔ 5⁻¹ ⋅ 5x = 5⁻¹ ⋅ 10 ↔ x = 2 as 5⁻¹ ⋅ 5 = 1 and 5⁻¹ ⋅ 10 = 2. We will learn how to write a system of n linear equations in n variables in the matrix form AX = B. To solve AX = B, we therefore need an operation that is analogous to multiplication by the 'reciprocal' of A. We will define, whenever possible, a matrix A⁻¹ that will serve this function (i.e., 	An $m \times n$ matrix A is a rectangular array of numbers with m rows and n columns. We write $A = \begin{array}{c} a_{mm} \longrightarrow \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} = \begin{bmatrix} a_{ij} \end{bmatrix}_{\substack{1 \le i \le m \\ 1 \le j \le n}}$

Basic Matrix Operations

Equality of Matrices

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are two $m \times n$ matrices, then $A = B \iff a_{ij} = b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

It says that we can compare matrices of the same size, and they are equal if and only if all their corresponding entries are equal

Addition of Matrices

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are two $m \times n$ matrices, then C = A + B is an $m \times n$ matrix with entries $c_{ij} = a_{ij} + b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

It says that we can add matrices of the same size by adding the corresponding entries of the matrices.

Scalar Multiplication

If $A = [a_{ij}]$ is an $m \times n$ matrix and c is a scalar (\equiv number), then cA is an $m \times n$ matrix with entries ca_{ij} for all $1 \le i \le m$ and $1 \le j \le n$.

It says that we can multiply a matrix by any number c (= scalar) by multiplying each entry of the matrix by the number c

http://www.ms.uky.edu/~ma138 Lecture 21

Example 2

Let A and B be the following two 2×3 matrices

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \end{bmatrix}$$

Find the following matrices

 $A^{T} (A^{T})^{T} 2A - 3B.$

The operation that interchanges rows and columns of a matrix is called transposition.

Transpose of a Matrix

Suppose that $A = [a_{ij}]$ is an $m \times n$ matrix. Then the **transpose** of A, denoted by A^T (or A' in our textbook), is an $n \times m$ matrix with entries $a^T_{ij} = a_{ji}$ for all $1 \le i \le m$ and $1 \le j \le n$.

Example 1

$$\begin{split} & \text{Suppose } A = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \text{ is a } 2 \times 1 \text{ matrix } (\equiv \text{ column vector) then} \\ & A^T = \begin{bmatrix} -2 & 1 \end{bmatrix} \text{ is a } 1 \times 2 \text{ matrix } (\equiv \text{ row vector)}. \end{split}$$

http://www.ms.uky.edu/~ma138

Lecture 21

Matrix Multiplication

Matrix Multiplication (\equiv row and column multiplication)

Suppose that $A = [a_{ij}]$ is an $m \times \ell$ matrix and $B = [b_{ij}]$ is an $\ell \times n$ matrix. Then $C = A \cdot B$ is an $m \times n$ matrix $[c_{ij}]$ with

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{i\ell}b_{\ell j} = \sum_{k=1}^{\ell} a_{ik}b_{kj}$$

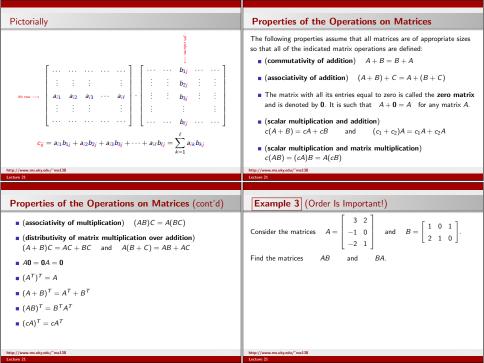
for $1 \leq i \leq m$ and $1 \leq j \leq n$.

- Note that c_{ij} is the entry in C that is located in the *i*th row and the *j*th column. To obtain it, we multiply (and then add) the entries of the *i*th row of A with the entries of the *j*th column of B.
- For the product *A* · *B* (or *AB* in short) to be defined, the number of columns in *A* must equal the number of rows in *B*.

http://www.ms.uky.edu/~ma138

Lecture 21

http://www.ms.uky.edu/~ma138



Example 4 (Order Is Important!)	Example 5 (Order Is Important!)
Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Find the matrices AA^T and A^TA .	Consider the matrices $A = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. Find the matrices AB and BA .
http://www.ms.uky.edu/~ma138 Lecture 21	http://www.ms.uky.edu/~ma138 Lecture 21
Powers of a Matrix	
If A is a square matrix and k is a positive integer, we define $A^{k} = k \text{th power of } A := A^{k-1}A = A A^{k-1} = \underbrace{A A^{\dots A}}_{k \text{ times}}$	
Example 6	
Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.	
Find the matrices A^2 , A^3 , A^4 , and A^5 .	
Have you seen these numbers before? Given $n \ge 1$, can you guess what A^n looks like?	
http://www.ms.uky.odu/~ms130 Lecture 21	