Matrices (Section 9.2) Alberto Corso

MA 138 - Calculus 2 with Life Science Applications

(alberto.corso@ukv.edu)

Department of Mathematics University of Kentucky

Friday, March 3, 2017

Example 1 (Part I)...Checking

Verify that:
$$\blacksquare \ A_1 = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \quad \text{and} \quad B_1 = \frac{1}{2} \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -5/2 \\ -1 & 3/2 \end{bmatrix}$$

are inverses of each other. That is
$$A_1B_1=I_2=B_1A_1$$
.

are inverses of each other. That is $A_2B_2 = I_3 = B_2A_2$.

 $A_2 = \begin{bmatrix} 3 & 5 & -1 \\ 2 & -1 & 3 \\ 4 & 2 & -3 \end{bmatrix} \text{ and } B_2 = \frac{1}{73} \begin{bmatrix} -3 & 13 & 14 \\ 18 & -5 & -11 \\ 8 & 14 & -13 \end{bmatrix}$

matrix B such that $AB = I_n = BA$ then B is called the inverse matrix of A and is denoted by A^{-1} . http://www.ms.uky.edu/~ma138

Inverse of a Matrix

Property of the Identity Matrix

Matrix Representation of Linear Systems

We observe that the system of linear equations

can be written in matrix form as AX = B, where $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$

Identity Matrix and Inverse of a Matrix

Suppose that A is an $m \times n$ matrix. Then $I_m A = A = AI_n$.

1's on its diagonal line and 0's elsewhere: that is.

For any $n \ge 1$, the identity matrix is an $n \times n$ matrix, denoted by I_n , with

 $I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{array} \right]$

Suppose that A is an $n \times n$ square matrix. If there exists an $n \times n$ square

http://www.ms.ukv.edu/~ma138 http://www.ms.ukv.edu/~ma138

The Guiding Light	Example 1 (Part II)
 ■ A simple key observation: To solve 5x = 10 for x, we just divide both sides by 5 (≡ multiply both sides by 1/5 = 5⁻¹). That is, 5x = 10	Using the results verified in Example 1 (Part I) and our <i>Guiding Light</i> (\equiv Principle), solve the following systems of linear equations by transforming them into matrix form
In then, whenever possible, we can write the solution of $AX = B$ as $AX = B \iff A^{-1} \cdot AX = A^{-1} \cdot B \iff X = A^{-1} \cdot B.$ http://www.m.uky.edu/~m318	http://www.ms.uky.edu/~ms138
Lecture 22	Lecture 22
Properties of Matrix Inverses	How do we find the inverse (if possible) of a matrix?
Properties of Matrix Inverses The following properties of matrix inverses are often useful.	How do we find the inverse (if possible) of a matrix? • First of all the matrix has to be a square matrix!
•	(, ,
The following properties of matrix inverses are often useful. Properties of Matrix Inverses	■ First of all the matrix has to be a square matrix!
The following properties of matrix inverses are often useful. Properties of Matrix Inverses Suppose A and B are both invertible $n \times n$ matrices then A^{-1} is unique;	■ First of all the matrix has to be a square matrix! ■ Suppose $n = 2$. For example, $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$.
The following properties of matrix inverses are often useful. Properties of Matrix Inverses Suppose A and B are both invertible $n \times n$ matrices then A^{-1} is unique; $A^{-1} = A$; $A^{-1} = A$; $A^{-1} = A$;	■ First of all the matrix has to be a square matrix! ■ Suppose $n = 2$. For example, $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$. ■ We need to find a matrix $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ such that $AB = I_2 = BA$.

http://www.ms.uky.edu/~ma138

http://www.ms.uky.edu/~ma138

Warning (using the other condition)	General Method for finding (if possible) the inverse
■ Consider again the matrix $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$. ■ We need to find a matrix $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ such that $AB = I_2 = BA$. ■ Suppose we impose instead the condition $BA = I_2$. ■ $BA = I_2$ \longrightarrow $\begin{bmatrix} 3x + 2y & 5x + 4y \\ 3z + 2w & 5z + 4w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ■ \bigcirc $\begin{cases} 3x + 2y = 1 \\ 5x + 4y = 0 \end{cases}$ and $\begin{cases} 3z + 2w = 0 \\ 5z + 4w = 1 \end{cases}$ ■ \bigcirc $\begin{bmatrix} 3 & 2 & 1 & 0 \\ 5 & 4 & 0 & 1 \end{bmatrix}$ \bigcirc row reduce \bigcirc $\begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5/2 & 3/2 \end{bmatrix}$ ■ Morale: We work with the transpose of A and of A^{-1} .	 ■ Let A be an n × n matrix. Finding a matrix B with AB = I_n results in n linear systems, each consisting of n equations in n unknowns. ■ The corresponding augmented matrices have the same matrix A on their left side and a column of 0's and a single 1 on their right side. ■ By solving these n systems simultaneously, we can speed up the process of finding the inverse matrix. ■ To do so, we construct the augmented matrix [A I_n]. We row reduce to obtain, if possible, the augmented matrix [I_n B]. ■ The matrix B, if it exists, is the inverse A⁻¹ of A. ■ The matrix B, if it exists, is the inverse A⁻¹ of A.
Example 2	General Formula for a 2x2 Matrix
Find the inverse of the 3×3 matrix $A = \begin{bmatrix} -1 & 3 & -1 \\ 2 & -2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$	■ For simplicity we write $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ instead of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. ■ Construct the augmented matrix $\begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{bmatrix}$. ■ Perform the Gaussian Elimination Algorithm. Set $\Delta = ad - bc$. ■ $\frac{1}{a}a_1 \begin{bmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{bmatrix}$ $\Rightarrow a_1 \begin{bmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{bmatrix}$ $\Rightarrow a_2 \begin{bmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{bmatrix}$ $\Rightarrow a_3 \begin{bmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{bmatrix}$

http://www.ms.uky.edu/~ma138

Lecture 22

 $\begin{bmatrix} c & d \mid 0 & 1 \end{bmatrix} \xrightarrow{g_0 - g_1} \begin{bmatrix} 0 & d - \frac{bc}{a} \mid -\frac{c}{a} & 1 \end{bmatrix}$ $\xrightarrow{\frac{a}{\Delta}g_0} \begin{bmatrix} 1 & \frac{b}{a} \mid \frac{1}{a} & 0 \\ 0 & 1 \mid -\frac{c}{\Delta} & \frac{a}{\Delta} \end{bmatrix} \xrightarrow{c_0 - \frac{b}{a}g_0} \begin{bmatrix} 1 & 0 \mid \frac{d}{\Delta} - \frac{b}{\Delta} \\ 0 & 1 \mid -\frac{c}{\Delta} & \frac{a}{\Delta} \end{bmatrix}$

http://www.ms.uky.edu/~ma138

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2 × 2 matrix.

The Inverse of a 2×2 Matrix

• We define det(A) = ad - bc.

■ A is invertible (≡ nonsingular) if and only if $\det(A) \neq 0$. In particular, $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Looking back at the formula for A^{-1} , where A is a 2×2 matrix whose determinant is nonzero, we see that, to find the inverse of A

determinant is nonzero, we see that, to find the inverse of A \blacksquare we divide by the determinant of A,

switch the diagonal elements of A,
 change the sign of the off-diagonal elements.

particular interest to us in the near future.

If the determinant is equal to 0, then the inverse of A does not exist. http://www.ms.uky.edu/~ms138

The determinant can be defined for any $n \times n$ matrix. The general formula is computationally complicated for $n \geq 3$.

is computationally complicated for $n \ge 3$.

We mention the following important result. Part (2) below will be of

Theorem Suppose that A is an $n \times n$ matrix, and X and $\mathbf{0}$ are $n \times 1$ matrices.

Then

• A is invertible (\equiv nonsingular) if and only if $det(A) \neq 0$.

A is **invertible** (\equiv **nonsingular**) if and only if $det(A) \neq 0$

■ The matrix equation (\equiv system of linear equations) $AX = \mathbf{0}$ has a **nontrivial solution** \iff A is **singular** \iff $\det(A) = 0$.

Find the inverse of the matrix

Example 3

 $A = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Lecture 22

equations) $\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$[3 \ 5][y][0]$$

has a **nontrivial solution** \iff A is **singular** \iff $\det(A) = 0$.

Lecture 22