MA 138 - Calculus 2 with Life Science Applications Linear Maps (Section 9.3)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky
Wednesday, March 8, 2017

Outline

- We mostly focus on 2×2 matrices, but point out that we can generalize our discussion to arbitrary $n \times n$ matrices.
- Consider a map of the form

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \text { or, in short, } \quad \mathbf{v} \mapsto A \mathbf{v}
$$

where A is a 2×2 matrix and \mathbf{v} is a 2×1 (column) vector.

- Since $A \boldsymbol{v}$ is a 2×1 vector, this map takes a 2×1 vector and maps it into a 2×1 vector. This enables us to apply A repeatedly: We can compute $A(A \mathbf{v})=A^{2} \mathbf{v}$, which is again a 2×1 vector, and so on.
- We will first look at vectors \mathbf{v}, then at maps $\mathbf{v} \mapsto A \mathbf{v}$, and finally at iterates of the map A (i.e., $A^{2} \mathbf{v}, A^{3} \mathbf{v}$, and so on).
http://www.ms.uky.edu/-ma138

Graphical Representation of (Column) Vectors

We assume that $\mathbf{v}=\left[\begin{array}{l}x_{\mathbf{v}} \\ y_{\mathbf{v}}\end{array}\right]$ is a 2×1 matrix. We call va column vector or simply a vector. Since a 2×1 matrix has just two components, we can represent a vector in the plane.
For instance, to represent the vector

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

in the $x-y$ plane, we draw an arrow from the
 origin $(0,0)$ to the point $(2,3)$.

Lecture 24

Addition of Vectors

Because vectors are matrices, we can add vectors using matrix addition.
For instance,

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

This vector sum has a simple geometric representation. The sum $\mathbf{v}+\mathbf{w}$ is the diagonal in the parallelogram that is formed by the two vectors \mathbf{v} and \mathbf{w}.

The rule for vector addition is therefore
 referred to as the parallelogram law.

Length of Vectors

The length of the vector $\mathbf{v}=\left[\begin{array}{l}x_{\mathbf{v}} \\ y_{v}\end{array}\right]$, denoted by $|\mathbf{v}|$, is the distance from the origin $(0,0)$ to the point $\left(x_{v}, y_{v}\right)$.
By Pythagoras Theorem we have

$$
\text { length of } \mathbf{v}=\|\mathbf{v}\|=\sqrt{x_{\mathbf{v}}^{2}+y_{\mathbf{v}}^{2}}
$$

We define the direction of \mathbf{v} as the angle α between the positive x-axis and the vector \mathbf{v}. The angle α is in the interval $[0,2 \pi)$ and satisfies $\tan \alpha=y_{\mathbf{v}} / x_{\mathbf{v}}$.

We thus have two distinct ways of representing vectors in the plane: We can use

- either the endpoint (x_{v}, y_{v})

- or the length and direction $(\|\mathbf{v}\|, \alpha)$.
http://www.ms.uky.edu/-ma138

Lecture 24

Linear Maps (also called Linear Transformations)

We start with a graphical approach to study maps of the form

$$
\mathbf{v} \mapsto A \mathbf{v}
$$

where A is a 2×2 matrix and \mathbf{v} is a 2×1 vector.
Since $A \mathbf{v}$ is a 2×1 vector as well, the map A takes the 2×1 vector \mathbf{v} and maps it to the 2×1 vector $A \mathbf{v}$ can be thought of as a map from the plane \mathbb{R}^{2} to the plane \mathbb{R}^{2}.

We will discuss simple examples of maps from \mathbb{R}^{2} into \mathbb{R}^{2} defined by $\mathbf{v} \mapsto A \mathbf{v}$, that take the vector \mathbf{v} and rotate, stretch, or contract it.

For an arbitrary matrix A, vectors may be moved in a way that has no simple geometric interpretation.

Scalar Multiplication of Vectors

Multiplication of a vector by a scalar is carried out componentwise.
If we multiply $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ by 2 , we get $2 v=\left[\begin{array}{l}2 \\ 4\end{array}\right]$. This operation corresponds to changing the length of the vector by the factor 2.
If we multiply $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ by -1 , then the resulting vector is $-\mathbf{v}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$, which has the same length as the original vector, but points in the opposite direction.

http://www.ms.uky.edu/-ma138
Lecture 24

Example 1 (Reflections)

Describe how multiplication by the matrices below changes the vectors in the picture:

$$
\begin{array}{ll}
A_{1}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] & A_{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \\
A_{3}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] & A_{4}=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
\end{array}
$$

Example 2 (Contractions or Expansions)

Describe how multiplication by the matrices below changes the vectors in the picture:

$$
\begin{array}{ll}
A_{1}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] & A_{2}=\left[\begin{array}{rr}
1 & 0 \\
0 & 1 / 2
\end{array}\right] \\
A_{3}=\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right] & A_{4}=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
\end{array}
$$

Example 4

Sir D'Arcy Wentworth Thompson (May 2, 1860 - June 21, 1948) was a Scottish biologist, mathematician, and classics scholar. He was a pioneer of mathematical biology. Thompson is remembered as the author of the distinctive 1917 book On Growth and Form. The book led the way for the scientific explanation of morphogenesis, the process by which patterns are formed in plants and animals.

For example, Thompson illustrated the transformation of Argyropelecus offers into Sternoptyx diaphana by applying a 20° shear mapping (\equiv transvection). What is the form of the matrix that describes this change?

(source: WikipediA)

http://www.ms.uky.edu/- ma138
Lecture 24

Example 3 (Shears)

Describe how multiplication by the matrices below changes the vectors in the picture:

$$
\begin{array}{ll}
A_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] & A_{2}=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] \\
A_{3}=\left[\begin{array}{rr}
1 & -a \\
0 & 1
\end{array}\right] & A_{4}=\left[\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right]
\end{array}
$$

Rotations

The following matrix rotates a vector in the $x-y$ plane by an angle α :

$$
R_{\alpha}=\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

If $\alpha>0$ the rotation is counterclockwise; if $\alpha<0$ it is clockwise.
Properties of Rotations:

- $\operatorname{det}\left(R_{\alpha}\right)=\cos ^{2} \alpha+\sin ^{2} \alpha=1$.
- A rotation by an angle α followed by a rotation by an angle β should be equivalent to a single rotation by a total angle $\alpha+\beta$. In fact, using the usual trigonometric identities, we have

$$
\begin{aligned}
R_{\alpha} R_{\beta} & =\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{rr}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\
\sin \alpha \cos \beta+\cos \alpha \sin \beta & -\sin \alpha \sin \beta+\cos \alpha \cos \beta
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right]=R_{\alpha+\beta}
\end{aligned}
$$

- The previous identity shows that the product of rotations is commutative: $\quad R_{\alpha} R_{\beta}=R_{\beta} R_{\alpha}$.
http://www.ms.uky.edu/-'ma138
Lecture 24

Example 5 (Rotations)

Describe how multiplication by the matrices below changes the vectors in the picture:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] \\
& B=\left[\begin{array}{rr}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Properties of Linear Maps

According to the properties of matrix multiplication, the map $\mathbf{v} \mapsto A \mathbf{v}$ satisfies the following conditions:

- $A(\mathbf{v}+\mathbf{w})=A \mathbf{v}+A \mathbf{w}$, and
- $A(\lambda \mathbf{v})=\lambda(A \mathbf{v})$, where λ is a scalar.

Because of these two properties, we say that the map $\mathbf{v} \mapsto A \mathbf{v}$ is linear.

Example 6 (Problem \# 2, Section 9.3, p 486)

Show by direct calculation that $A(\mathbf{v}+\mathbf{w})=A \mathbf{v}+A \mathbf{w}$ and $A(\lambda \mathbf{v})=\lambda(A \mathbf{v})$.

$=\left[\begin{array}{l}a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right) \\ c\left(x+x^{\prime}\right)+d\left(y+y^{\prime}\right)\end{array}\right]$
$=\left[\begin{array}{l}(a x+b y)+\left(a x^{\prime}+b y^{\prime}\right) \\ (c x+d y)+\left(c x^{\prime}+d y^{\prime}\right)\end{array}\right]$
$=\left[\begin{array}{l}a x+b y \\ c x+d y\end{array}\right]+\left[\begin{array}{c}a x^{\prime}+b y^{\prime} \\ c x^{\prime}+d y^{\prime}\end{array}\right]$
$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right.$
$A(\lambda \mathbf{v})=\lambda(A \mathbf{v})$

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(\lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) } & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
\lambda x \\
\lambda y
\end{array}\right]=\left[\begin{array}{l}
a(\lambda x)+b(\lambda y) \\
c(\lambda x)+d(\lambda y)
\end{array}\right] \\
& =\left[\begin{array}{l}
\lambda(a x+b y) \\
\lambda(c x+d y)
\end{array}\right]=\lambda\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right] \\
& =\lambda\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
\end{aligned}
$$

Composition of Linear Maps \equiv Product of Matrices

Consider two linear maps $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2}$ given by the matrices A_{f} and A_{g}

That is the coordinates are transformed according to the rules

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = a x + b y } \\
{ y ^ { \prime } = \alpha x + d y }
\end{array} \quad \left\{\begin{array}{l}
x^{\prime \prime}=\alpha x^{\prime}+\beta y^{\prime} \\
y^{\prime \prime}=\gamma x^{\prime}+\delta y^{\prime}
\end{array}\right.\right.
$$

If we compose the two maps we obtain the transformation

$$
\left\{\begin{array}{l}
x^{\prime \prime}=\alpha(\alpha x+b y)+\beta(c x+d y)=(\alpha a+\beta c) x+(\alpha b+\beta d) y \\
y^{\prime \prime}=\gamma(a x+b y)+\delta(c x+d y)=(\gamma a+\delta c) x+(\gamma b+\delta d) y
\end{array}\right.
$$

whose matrix representation corresponds to the product $A_{g} A_{f}$ of the two matrices

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\alpha a+\beta c & \alpha b+\beta d \\
\gamma a+\delta c & \gamma b+\delta d
\end{array}\right]}_{A_{g \circ f}}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]}_{A_{g}} \underbrace{\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]}_{A_{f}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

