MA 138 - Calculus 2 with Life Science Applications Eigenvectors and Eigenvalues (Section 9.3)

Alberto Corso (alberto.corso@ukv.edu)

Department of Mathematics

University of Kentucky

Friday, March 10, 2017

Lecture 25

Example 1 (Online Homework # 5)

Determine if
$${\bf v}$$
 is an eigenvector of the matrix A:

(a)
$$A = \begin{bmatrix} -35 & -14 \\ 94 & 35 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$;

(b)
$$A = \begin{bmatrix} 19 & 24 \\ -12 & -17 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$;

(b)
$$A = \begin{bmatrix} -12 & -17 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \end{bmatrix}$;
(c) $A = \begin{bmatrix} -3 & -10 \\ 5 & 12 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$.

Definition Assume that A is a square matrix. A nonzero

 $A\mathbf{v} = \lambda \mathbf{v} \quad (\mathbf{v} \neq \mathbf{0})$

Eigenvalues and Eigenvectors

vector v that satifies the equation

$$A\mathbf{v} = \lambda \mathbf{v}$$
 $(\mathbf{v} \neq \mathbf{v})$ is an **eigenvector** of the matrix A , and the

number
$$\lambda$$
 is an **eigenvalue** of the matrix A .

The zero vector $\mathbf{0}$ always satisfies the equation $A\mathbf{0} = \lambda \mathbf{0}$ for any choice of λ .

Thus $\mathbf{0}$ is not special. That's why we assume $\mathbf{v} \neq \mathbf{0}$.

 $Av = \lambda v$

The eigenvalue λ can be 0. though.

Geometric interpretation, when the eigenvalue λ ∈ ℝ: If we draw a straight line through the origin in the direction of an eigenvector, then any vector on this straight line will remain on the line after the map A is applied.

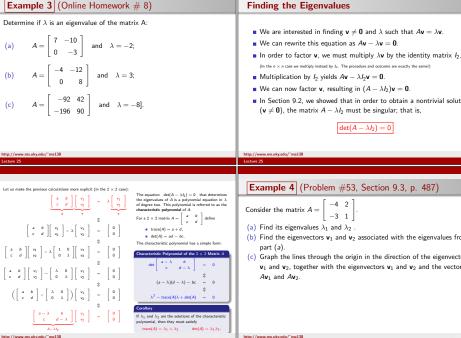
http://www.ms.uky.edu/~ma138 Lecture 25

Example 2 (Online Homework # 6)

Given that $\mathbf{v}_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ are eigenvectors

of the matrix $A = \begin{bmatrix} 28 & 36 \\ -18 & -23 \end{bmatrix}$,

determine the corresponding eigenvalues λ_1 and λ_2 .



(In the $n \times n$ case we multiply instead by I_n . The procedure and outcome are exactly the same!) ■ Multiplication by I₂ yields Av - λI₂v = 0 We can now factor v. resulting in (A − λI₂)v = 0. In Section 9.2, we showed that in order to obtain a nontrivial solution $(\mathbf{v} \neq \mathbf{0})$, the matrix $A - \lambda I_2$ must be singular; that is, $det(A - \lambda I_2) = 0$ Example 4 (Problem #53, Section 9.3, p. 487) Consider the matrix $A = \begin{bmatrix} -4 & 2 \\ 3 & 1 \end{bmatrix}$. (a) Find its eigenvalues λ_1 and λ_2 . (b) Find the eigenvectors v₁ and v₂ associated with the eigenvalues from part (a). (c) Graph the lines through the origin in the direction of the eigenvectors v₁ and v₂, together with the eigenvectors v₁ and v₂ and the vectors $A\mathbf{v}_1$ and $A\mathbf{v}_2$.

Lecture 25

Example 5 (Online Homework #10)	Example 6 (Online Homework #12)
Find the eigenvalues and associated $\frac{\text{unit}}{\text{eigenvectors of the (symmetric)}}$ matrix $A = \begin{bmatrix} 5 & -10 \\ -10 & 20 \end{bmatrix}$.	Let $A = \begin{bmatrix} -4 & 3 \\ 5 & k \end{bmatrix}$. Find the value of k so that A has 0 as an eigenvalue.
http://www.ms.uky.edu/~ma138 Lecture 25	http://www.ms.uky.edu/~ma138 Lecture 25
Example 7 (Online Homework #13)	Example 8 (Online Homework #16)
Example 7 (Online Homework #13) For which value of k does the matrix $A = \begin{bmatrix} -3 & k \\ -8 & -8 \end{bmatrix}$ have one real eigenvalue of multiplicity 2?	Example 8 (Online Homework #16) Find a matrix A such that $\mathbf{v}_1 = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ are eigenvectors of A , with eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ respectively.

Example 9 (Complex Eigenvalues)

Consider the matrix $A = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$.

- (a) Find its eigenvalues.
- (b) Find the eigenvectors associated with the eigenvalues from part (a).